# Trigonometry Part 3 

## What if You Need to Find an Angle Measure?

## Use Inverse Trig Ratios

## Inverse Trig Ratios include

$$
\sin ^{-1}, \cos ^{-1}, \tan ^{-1}
$$

## Use Inverse Trig Ratios!

$$
\begin{gathered}
\text { If } \sin 30^{\circ}=1 / 2 \text { or } 0.5, \text { then } \\
\sin ^{-1}(0.5)=30^{\circ}
\end{gathered}
$$

$\sin ^{-1}(x)$ is read as "the inverse sine of $x$ "
(this is the opposite of sine and gives us the missing angle measure)

## Practice Finding Angle Measures

Round to the nearest WHOLE degree. Don't forget to include the degree sign.

$$
\begin{array}{lll}
0 & \angle U & =\sin ^{-1}(0.5878) \\
& \angle U=36^{\circ} \\
0 & \angle X & =\tan ^{-1}(1.7321) \\
0 & \angle A & =\cos ^{-1}(0.9135) \\
& \angle X=60^{\circ} \\
0 & \angle X & =\sin ^{-1}\left(\frac{3}{4}\right)
\end{array}
$$

## Find the Measure of $\angle \mathrm{A}$

Mark your angle and label your sides adjacent, opposite, and hypotenuse.

$\tan \angle A=\frac{o}{a} \quad \tan \angle A=\frac{14}{12} \quad \tan ^{-1}\left(\frac{14}{12}\right) \approx 49^{\circ}$

## Find the Measure of $\angle \mathrm{C}$

Mark your angle and label your sides adjacent, opposite, and hypotenuse.

$\tan \angle C=\frac{o}{a} \quad \tan \angle C=\frac{12}{14} \quad \tan ^{-1}\left(\frac{12}{14}\right) \approx 41^{\circ}$

## Find the Measure of $\angle \mathbf{U}$

Mark your angle and label your sides adjacent, opposite, and hypotenuse.

$\sin \angle U=\frac{o}{h} \quad \sin \angle U=\frac{19}{28} \quad \sin ^{-1}\left(\frac{19}{28}\right) \approx 43^{\circ}$

