\qquad

Learning Goals:

Determine which type of line on a graph represents a given inequality.
Graph an inequality in two variables.
Interpret the solutions of inequalities algebraically and contextually.

Recall

A linear inequality describes \qquad

The solutions of an inequality are \qquad

The ordered pairs are located in the \qquad area of the graph and on the \qquad .

Inequality Symbol	Boundary Line	Shaded Area
\leq		
\geq		
$<$		
$>$		

Determine the Boundary Line and Shaded Area for a Given Inequality

Steps:

- Write the equation in slope-intercept form.
- If the inequality is \leq or \geq, the line is solid. If the inequality is \langle or \rangle, the line is dashed.
- If the inequality is $>$ or \geq, shade above. If the inequality is $<$ or \leq, shade below.

Does each linear inequality have a dashed or solid line and do you shade above or below the line?

1. $y \geq 3 x-2$
2. $3 y-5 x<-12$

Determine if a Given Point is a Solution to a Linear Inequality

Steps:

- Replace x and y with their respective values.
- Simplify.
- If the inequality is TRUE, then the ordered pair is a SOLUTION.
- If the inequality is FALSE, then the ordered pair is NOT a solution.

Determine if the ordered pair is a solution for the given linear inequality.
5. $y \leq-2 x+1 ;$ Point $(2,2)$
6. $y \geq 3 x-2 ; \operatorname{Point}(0,0)$

