#### Algebra I: 7.1 Guided Notes Graphing Inequalities



## Learning Goals:

Determine which type of line on a graph represents a given inequality. Graph an inequality in two variables. Interpret the solutions of inequalities algebraically and contextually.

## <u>Recall</u>

A linear inequality describes <u>a region of the coordinate plane that has a boundary line</u>.

The solutions of an inequality are the ordered pairs (x, y) that make the inequality TRUE.

The ordered pairs are located in the <u>SHADED</u> area of the graph and on the <u>SOLID LINE</u>.



| Inequality Symbol | <b>Boundary Line</b> | Shaded Area    |
|-------------------|----------------------|----------------|
| ≤                 | Solid                | Below the line |
| 2                 | Solid                | Above the line |
| <                 | Dashed               | Below the line |
| >                 | Dashed               | Above the line |

### **Determine the Boundary Line and Shaded Area for a Given Inequality**

| Steps:                                                                                                                                 | Does each linear inequality have a dashed or solid line and do you shade above or below the line? |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <ul> <li>Write the equation in<br/>slope-intercept form.</li> </ul>                                                                    | 1. $y \ge 3x - 2$                                                                                 |
| <ul> <li>If the inequality is ≤ or</li> <li>&gt;, the line is solid. If the inequality is &lt; or &gt;, the line is dashed.</li> </ul> | solid line<br>shade above<br>2. $3y-5x < -12$                                                     |
| <ul> <li>If the inequality is &gt; or</li> <li>≥, shade above. If the inequality is &lt; or ≤, shade below.</li> </ul>                 | $y < \frac{5}{3}x - 4$<br>dashed line<br>shade below                                              |

# Graph a Linear Inequality in Two Variables

| Steps:                                                                                                                                                                                                                                                                                                                         | Graph each linear inequality.                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Write the inequality in slope-intercept form. <i>Remember to reverse the inequality sign if you multiply or divide by a negative number.</i></li> <li>Graph the equation, i.e. <i>y</i> = 2<i>x</i> + 1 and <i>y</i> = 3<i>x</i> - 5, using a solid or dashed boundary line.</li> <li>Shade above or below</li> </ul> | 3. $y-1 \le 2x$<br>$y \le 2x+1$                                                                                                                                                                             |
| <ul> <li>If you are not sure what side to shade, choose a test point and see if it is a solution for the inequality.</li> </ul>                                                                                                                                                                                                | 4. $-y < -3x + 5$<br>y > 3x - 5<br>Check<br>See if (-2, 0) is a solution<br>for the inequality.<br>0 > 3(-2) - 5<br>0 > -6 - 5<br>0 > -11<br>True. So shade to the left<br>of the line.<br>-3 - 2 - 1 0 - 1 |

## **Determine if a Given Point is a Solution to a Linear Inequality**

| Steps:                                                                                           | Determine if the ordered pair is a solution for the given linear inequality.      |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <ul> <li>Replace <i>x</i> and <i>y</i> with<br/>their respective values.</li> </ul>              | 5. $y \le -2x + 1$ ; Point (2, 2)<br>$2 \le -2(2) + 1$                            |
| <ul> <li>Simplify.</li> </ul>                                                                    | $2 \le -2(2) + 1$<br>$2 \le -4 + 1$<br>$2 \le -3$ (2, 2) is <u>not</u> a solution |
| <ul> <li>If the inequality is<br/>TRUE, then the ordered<br/>pair is a SOLUTION.</li> </ul>      | 6. $y \ge 3x - 2$ ; Point (0, 0)<br>$0 \ge 3(0) - 2$                              |
| <ul> <li>If the inequality is<br/>FALSE, then the ordered<br/>pair is NOT a solution.</li> </ul> | $0 \ge 0 - 2$ $(0, 0) \text{ is a solution}$                                      |