\qquad
\qquad

Let's Review!
Distributive Property
Grouping symbols, such as parentheses () or brackets [], may mean slightly different things.
a. In this example, what do the parentheses mean? 5-(3+4)
b. In this example, what do the parentheses mean? $3(x+2)$

Fill out the table.

Product	Repeated Multiplication	Rearrange the Multiplication so Like Terms are Grouped Next to Each Other	Power of the Form $a^{c} \cdot b^{c}$
$(2 \cdot 3)^{3}$	$(2 \cdot 3) \cdot(2 \cdot 3) \cdot(2 \cdot 3)$	$2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3$	$2^{3} 3^{3}$
$(x \cdot y)^{5}$			
$(3 x)^{4}$			

In the table, what do the parentheses mean?

- Power to a Power Rule
$\left(x^{a}\right)^{b}=x^{a \cdot b}$
When you \qquad ,
\qquad the \qquad .
When you \qquad , raise
\qquad number or variable to the power.

Fill out the table.

Problem to Simplify	First Repeated Multiplication	Second Repeated Multiplication	Power of the Form $\boldsymbol{a}^{\boldsymbol{b}}$
$\left(2^{2}\right)^{3}$	$2^{2} \cdot 2^{2} \cdot 2^{2}$	$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$	2^{6}
$\left(5^{3}\right)^{4}$			
$\left(x^{5}\right)^{2}$			
$\left(3^{2} y^{2}\right)^{3}$			

Use the Power to a Power Rule to simplify each of the following.
a. $\frac{\left(x^{3}\right)^{2}}{x^{4}}$
b. $\left(-2 m^{5}\right)^{2} \cdot m^{3}$
c. $\left(2 r^{-4}\right)^{-3}$

- Negative Exponent Rule

$$
x^{-a}=\frac{1}{x^{a}}
$$

If the exponent is \qquad move it \qquad or
\qquad to make it \qquad .

Evaluate the first 5 exponential expressions and try to determine the pattern for the remaining 3.

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}	2^{-3}

Fill out the table.

Quotient	Repeated Multiplication	Answer as a Fraction	Use the Quotient Rule to get the Power in the Form \boldsymbol{a}^{b}
$\frac{2^{2}}{2^{5}}$	$\frac{2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$	$\frac{1}{2^{3}}$	$2^{2-5}=2^{-3}$
$\frac{a^{4}}{a^{9}}$			
$\frac{5^{0}}{25^{4}}$			
$\frac{a^{4} b^{5}}{a^{7} b^{6}}$			

Use the Negative Exponent Rule to simplify each of the following. Write your answer using only positive exponents.
a. $-5 x^{-2}$
b. $\frac{4 k^{2}}{8 k^{5}}$
c. $\frac{x y^{-2}}{x^{4} y^{-3}}$

How do you simplify $\frac{1}{2^{-3}}$?

- Zero Exponent Rule

$$
x^{0}=1
$$

Anything (except zero) raised to the \qquad power $=$ \qquad

Fill out the table.

Quotient	Use the Quotient Rule to Write in the Form a^{b}	Look at the Original Quotient. Rewrite it as Just a Number
$\frac{2^{3}}{2^{3}}$	$2^{3-3}=2^{0}=1$	$\frac{2^{3}}{2^{3}}=\frac{8}{8}=1$
$\frac{x^{7}}{x^{7}}$		

Use the Zero Exponent Rule to simplify each of the following.
a. $(a b)^{0}$
b. $(-2)^{0}$
c. -2^{0}
d. $7 x^{0}$

