Let's Review!

Distributive Property

Grouping symbols, such as parentheses () or brackets [], may mean slightly different things.

a. In this example, what do the parentheses mean? 5 - (3 + 4)

b. In this example, what do the parentheses mean? 3(x + 2)

Fill out the table.

Product	Repeated Multiplication	Rearrange the Multiplication so Like Terms are Grouped Next to Each Other	Power of the Form $a^{c} \cdot b^{c}$
$(2 \cdot 3)^3$	$(2 \cdot 3) \cdot (2 \cdot 3) \cdot (2 \cdot 3)$	2•2•2•3•3•3	$2^{3}3^{3}$
$(x \bullet y)^5$			
$(3x)^4$			

In the table, what do the parentheses mean?

Power to a Power Rule			
$\left(x^a\right)^b = x^{a \cdot b}$			
When you		/	
	the	·	
When you		, r	aise
n	umber or variable to the power.		

Fill out the table.

Problem to Simplify	First Repeated Multiplication	Second Repeated Multiplication	Power of the Form <i>a^b</i>
$(2^2)^3$	$2^2 \cdot 2^2 \cdot 2^2$	2•2•2•2•2•2	2^{6}
$(5^3)^4$			
$(x^{5})^{2}$			
$(3^2 y^2)^3$			

Use the Power to a Power Rule to simplify each of the following.

a. $\frac{(x^3)^2}{x^4}$ b. $(-2m^5)^2 \cdot m^3$ c. $(2r^{-4})^{-3}$

How does the Power to a Power Rule differ from The Product Rule?

• <u>Negative Exponent Rule</u>

$$x^{-a} = \frac{1}{x^a}$$

If the exponent is ______, move it ______ or _____ to make it ______.

Evaluate the first 5 exponential expressions and try to determine the pattern for the remaining 3.

24	2 ³	2 ²	21	20	2-1	2-2	2 ⁻³

Fill out the table.

Quotient	Repeated Multiplication	Answer as a Fraction	Use the Quotient Rule to get the Power in the Form <i>a^b</i>
$\frac{2^2}{2^5}$	$\frac{2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$	$\frac{1}{2^3}$	$2^{2-5} = 2^{-3}$
$\frac{a^4}{a^9}$			
$\frac{5^0}{25^4}$			
$\frac{a^4b^5}{a^7b^6}$			

Use the Negative Exponent Rule to simplify each of the following. Write your answer using only positive exponents.

a.
$$-5x^{-2}$$
 b. $\frac{4k^2}{8k^5}$ c. $\frac{xy^{-2}}{x^4y^{-3}}$

How do you simplify
$$\frac{1}{2^{-3}}$$
?

• Zero Exponent Rule

 $x^{0} = 1$

Anything (except zero) raised to the _____ power = _____.

Fill out the table.

Quotient	Use the Quotient Rule to Write in the Form a^b	Look at the Original Quotient. Rewrite it as Just a Number
$\frac{2^3}{2^3}$	$2^{3-3} = 2^0 = 1$	$\frac{2^3}{2^3} = \frac{8}{8} = 1$
$\frac{x^7}{x^7}$		

Use the Zero Exponent Rule to simplify each of the following.

a. $(ab)^0$ b. $(-2)^0$ c. -2^0 d. $7x^0$