Name	Period	
		-

Let's Review!

Distributive Property

Grouping symbols, such as parentheses () or brackets [], may mean slightly different things.

a. In this example, what do the parentheses mean? 5 - (3 + 4)

Think PEMDAS (Order of Operations)! Do what's inside the parentheses first.

$$5 - (3 + 4)$$

-2

b. In this example, what do the parentheses mean? 3(x + 2)

Distribute! Multiply what's inside by whatever is outside the parentheses.

$$3(x + 2)$$

$$3x + 3(2)$$

$$3x + 6$$

Fill out the table.

Product	Repeated Multiplication	Rearrange the Multiplication so Like Terms are Grouped Next to Each Other	Power of the Form $a^c \cdot b^c$
$(2 \cdot 3)^3$	(2•3)•(2•3)•(2•3)	2•2•2•3•3•3	2 ³ 3 ³
$(x \cdot y)^5$	$(x \cdot y) \cdot (x \cdot y) \cdot (x \cdot y) \cdot (x \cdot y) \cdot (x \cdot y)$	x • x • x • x • x • y • y • y • y • y	x^5y^5
$(3x)^4$	$(3x) \bullet (3x) \bullet (3x) \bullet (3x)$	3•3•3•3•x•x•x	3 ⁴ x ⁴

In the table, what do the parentheses mean?

Product to a Power Rule. $(a \cdot b)^c = a^c \cdot b^c$

An expression raised to a power = the product of its factors raised to the same power.

Power to a Power Rule

$$\left(x^a\right)^b = x^{a \cdot b}$$

When you RAISE a power to a power, MULTIPLY the exponents.

When you RAISE an (expression) to a power, raise EACH number or variable to the power.

Fill out the table.

Problem to Simplify	First Repeated Multiplication	Second Repeated Multiplication	Power of the Form <i>a</i> ^b
$(2^2)^3$	$2^2 \cdot 2^2 \cdot 2^2$	2•2•2•2•2	2 ⁶
$(5^3)^4$	$5^3 \cdot 5^3 \cdot 5^3 \cdot 5^3$	5.5.5.5.5.5.5.5.5.5.5.5	5 ¹²
$(x^5)^2$	x ⁵ •x ⁵	$x \cdot x \cdot x$	x^{10}
$(3^2y^2)^3$	$(3^2y^2) \cdot (3^2y^2) \cdot (3^2y^2)$	3•3•y•y•3•3•y•y•3•3•y•y	$3^6 y^6$

Use the Power to a Power Rule to simplify each of the following.

a.
$$\frac{(x^3)^2}{x^4}$$

b.
$$(-2m^5)^2 \cdot m^3$$

c.
$$(2r^{-4})^{-3}$$

$$\frac{r^{12}}{8}$$

$$x^2$$

$$4m^{13}$$

$$\frac{r^{12}}{8}$$

How does the Power to a Power Rule differ from The Product Rule?

Product Rule: ADD exponents

Power to a Power Rule: MULTIPLY exponents

Negative Exponent Rule

$$x^{-a} = \frac{1}{x^a}$$

If the exponent is <u>NEGATIVE</u>, move it <u>up</u> or <u>down</u> to make it <u>POSITIVE</u>.

SKIP THIS TABLE

Evaluate the first 5 exponential expressions and try to determine the pattern for the remaining 3.

24	23	22	21	20	2-1	2-2	2-3
16	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	1/8

Fill out the table.

Quotient	Repeated Multiplication SKIP THIS COLUMN	Answer as a Fraction	Use the Quotient Rule to get the Power in the Form a^b
$\frac{2^2}{2^5}$	$\frac{2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$	$\frac{1}{2^3}$	$2^{2-5} = 2^{-3}$
$\frac{a^4}{a^9}$	a•a•a•a a•a•a•a•a•a•a•a	$\frac{1}{a^5}$	$a^{4-9} = a^{-5}$
$\frac{5^0}{25^4}$	$\frac{5^0}{25 \cdot 25 \cdot 25 \cdot 25} = \frac{5^0}{5^2 \cdot 5^2 \cdot 5^2 \cdot 5^2}$	$\frac{1}{(5^2)^4} = \frac{1}{5^8}$	$5^{0-8} = 5^{-8}$
$\frac{a^4b^5}{a^7b^6}$	$\frac{a \cdot a \cdot a \cdot a \cdot a \cdot b \cdot b \cdot b \cdot b \cdot b}{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot b \cdot b \cdot b \cdot $	$\frac{1}{a^3b}$	$a^{4-7}b^{5-6} = a^{-3}b^{-1}$

Use the Negative Exponent Rule to simplify each of the following. Write your answer using only positive exponents.

a.
$$-5x^{-2}$$

b.
$$\frac{4k^2}{8k^5} = \frac{4}{8} \cdot \frac{K^2}{K^5}$$

$$\frac{1}{2k^3} \qquad 5-2=3$$

c.
$$\frac{xy^{-2}}{x^4y^{-3}} = \frac{\chi^1}{\chi^4} \cdot \frac{y^{-2}}{y^{-3}}$$

 $\frac{y}{x^3}$ $4-1=3$
 $-2-(-3)$
 $-2+3=1$

What does a negative exponent mean?

The base is on the wrong side of the division sign or fraction bar.

To turn a negative into a positive exponent, cross the line and change the sign of the exponent!

How do you simplify $\frac{1}{2^{-3}}$?

Move 2⁻³ up to the numerator so it becomes positive.

$$\frac{2^3}{1} = 2^3$$

Zero Exponent Rule

$$x^0 = 1$$

Anything (except zero) raised to the $\frac{"0"}{}$ power = $\frac{1}{2}$.

Fill out the table.

Quotient	Use the Quotient Rule to Write in the Form a^b	Look at the Original Quotient. Rewrite it as Just a Number
$\frac{2^3}{2^3}$	$2^{3-3} = 2^0 = 1$	$\frac{2^3}{2^3} = \frac{8}{8} = 1$
$\frac{x^7}{x^7}$	$x^{7-7} = x^0 = 1$	$\frac{x^7}{x^7} = 1$

Use the Zero Exponent Rule to simplify each of the following.

a.
$$(ab)^{\circ} = a^{\circ}b^{\circ}$$

b.
$$(-2)^0$$

c.
$$-2^{\circ} = -1 \cdot 2^{\circ}$$
 d. $7x^{\circ} = 7 \cdot \chi^{\circ}$

$$d. 7x^0 = 7 \cdot \chi^0$$

1

$$-1$$