\qquad Linear Inequalities \& Systems of Inequalities SHOW YOUR WORK!!

Define each of the following terms. Use your notes and the Carnegie Learning handout for chapter 7 if you need help.

1) Linear Inequality - \qquad
\qquad
2) Systems of Linear Inequalities - \qquad
3) Constraints - \qquad

Fill in the blanks.
4) The ordered pairs are located in the \qquad area of the graph and on the
\qquad .
5) Ordered pairs that make the inequality or inequalities true are called \qquad .
6) Solutions for a system of inequalities are \qquad the ordered pairs in the
\qquad shaded region.
7) If the shaded regions do not overlap, there is \qquad solution.

Determine if the graph of each linear inequality will have a DASHED or SOLID line AND if you shade ABOVE or BELOW the line.
8) $y<14 x-7$
9) $y-9 x \geq 3$
10) $4 x-2 y \leq 8$
11) Jacob can spend no more than $\$ 4$ for chips and candy. Chips cost $\$ 1$ each and candy costs $\$ 0.50$ each.
a. Write a linear inequality to represent the number of ways Jacob can spend $\$ 4$.
b. Graph the inequality. Don't forget to shade!
c. Use the graph to determine if the ordered pair $(3,2)$ is a solution to the problem situation?

Number of Chips
d. Prove algebraically that the ordered pair $(4,8)$ is a solution to the problem situation.
e. Does the ordered pair $(-2,-3)$ make sense as a solution in the context of this problem situation? Why or why not?

Graph each of the linear inequalities.

12) $y<-\frac{2}{3} x+3$

13) $x-5 y \geq-10$

Write a system of linear inequalities for each problem situation. Remember to define your variables.
14) Pablo's truck can carry a maximum of 1,000 pounds. He loads his truck with 20 -pound bags of cement and 80 -pound bags of cement. He plans to load at least 10 bags of cement into his truck.
15) Kathryn makes flower arrangements to sell in her shop. She can make a small arrangement in 30 minutes (or $1 / 2$ hour) that sells for $\$ 20$. She can make a large arrangement in 1 hour that sells for $\$ 50$. Kathryn hopes to make at least $\$ 350$ by working no more than 8 hours.

Prove algebraically whether the given point is a solution to the system of linear inequalities.
16) $\left\{\begin{array}{l}x+5 y<-1 \\ 2 y \geq-3 x-2\end{array}\right.$

Point: $(0,-1)$
17) $\left\{\begin{array}{l}4 x+y<21 \\ \frac{1}{2} x \leq 36-5 y\end{array}\right.$

Point: $(3,7)$

Graph each system of linear inequalities.

18) $\left\{\begin{array}{l}y \leq-2 x-3 \\ y<-\frac{2}{3} x+1\end{array}\right.$
19) $\left\{\begin{array}{l}y \geq-2 x+2 \\ y<-2\end{array}\right.$

20) $\left\{\begin{array}{l}y>-\frac{1}{2} x-2 \\ y \leq-\frac{1}{2} x+3\end{array}\right.$

21) $\left\{\begin{array}{l}x+y \leq 1 \\ x-3 y \leq 9\end{array}\right.$

22) $\left\{\begin{array}{l}y \leq \frac{1}{3} x-2 \\ y>\frac{1}{3} x+1\end{array}\right.$

23) $\left\{\begin{array}{l}x+2 y<4 \\ 2 x-y>3\end{array}\right.$

