Algebra 1: 7.1 & 7.2 Quiz Review Name Period _____ Linear Inequalities & Systems of Inequalities SHOW YOUR WORK!! Period ______

Define each of the following terms. Use your notes and the Carnegie Learning handout for chapter 7 if you need help.

1)	Linear Inequality			
2)	Systems of Linear Inequalities			
3)	Constraints			
Fill in	Fill in the blanks.			
4)	The ordered pairs are located in the area of the graph and on the			
5)	Ordered pairs that make the inequality or inequalities true are called			
6)	Solutions for a system of inequalities are the ordered pairs in the			
	shaded region.			
7)	If the shaded regions do not overlap, there is solution.			
Deter	mine if the graph of each linear inequality will have a DASHED or SOLID line AND if you			

shade ABOVE or BELOW the line.

8) y < 14x - 79) $y - 9x \ge 3$ 10) $4x - 2y \le 8$

- 11) Jacob can spend *no more than* \$4 for chips and candy. Chips cost \$1 each and candy costs \$0.50 each.
 - a. Write a linear inequality to represent the number of ways Jacob can spend \$4.
 - b. Graph the inequality. Don't forget to shade!
 - c. Use the graph to determine if the ordered pair (3, 2) is a solution to the problem situation?
 - d. Prove algebraically that the ordered pair (4, 8) is a solution to the problem situation.
- y 8 6 Number of Candies 4 2 Χ 0 Þ 8 6 8 2 4 6 8

Number of Chips

e. Does the ordered pair (-2, -3) make sense as a solution in the context of this problem situation? Why or why not?

Graph each of the linear inequalities.

Write a <u>system</u> of linear inequalities for each problem situation. Remember to define your variables.

- 14) Pablo's truck can carry *a maximum of* 1,000 pounds. He loads his truck with 20-pound bags of cement and 80-pound bags of cement. He plans to load *at least* 10 bags of cement into his truck.
- 15) Kathryn makes flower arrangements to sell in her shop. She can make a small arrangement in 30 minutes (or 1/2 hour) that sells for \$20. She can make a large arrangement in 1 hour that sells for \$50. Kathryn hopes to make *at least* \$350 by working *no more than* 8 hours.

Prove algebraically whether the given point is a solution to the system of linear inequalities.

	$\int x + 5y < -1$	$\int 4x + y < 21$
16)	$\Big(2y \ge -3x - 2\Big)$	$17) \begin{cases} \frac{1}{2}x \le 36 - 5y \end{cases}$
	Point: (0, -1)	
		Point: (3, 7)

Graph each system of linear inequalities.

22) $\begin{cases} x + y \le 1 \\ x - 3y \le 9 \end{cases}$

 $23) \quad \begin{cases} x+2y<4\\ 2x-y>3 \end{cases}$

