

Learning Goal:

To solve a system of equations algebraically using linear combinations (elimination).

Solving Systems of Equations

1) Use ________ to get an approximate answer or if the lines are easy to graph, i.e.

slope-intercept form.

2) Use _______ if one variable can be easily replaced by it's value or an

expression that includes the other variable, i.e. y = or x =.

3) Use ______ when it easy to eliminate a variable by

______ or ______ the system of equations.

Solving a System of Equations Using Linear Combinations

- 2. The coefficients should be equal, but with

opposite signs.

- *a.* Does one of the variables have the same coefficient in both equations?
- b. Can you multiply one or both equations by a number so one of the variables will have the same coefficient in both equations? Hint: find the LCM (least common multiple).

4. .

5. Plug the solution into one of the equations to ______.

6. _____ your solution _____.

Solving a System by Adding Equations

Steps:	Example 1
 Eliminate <i>y</i> by adding the system of equations. 	2x + 5y = 17 6x - 5y = -9
• Solve for <i>x</i> .	
 Replace the value of <i>x</i> in one of the equations to solve for <i>y</i>. 	

$$2x + 3y = 11$$

 $-2x + 9y = 1$

What if the 2^{nd} equation was 2x - 9y = -1? How would you solve it?

Steps:	Example 2
 Stack the equations so common terms line up. 	15y = 2x - 32 -7x + 5y = -17
 Multiply the 2nd equation by -3 so the coefficients of <i>y</i> are equal but with opposite signs. 	
 Eliminate <i>y</i> by adding the system of equations. 	
• Solve for <i>x</i> .	
 Replace the value of <i>x</i> in one of the equations to solve for <i>y</i>. 	

|--|

Let's Practice:

6x + 3y = -6-2x + 5y = 14

Solving a System by Multiplying Both Equations

Steps:	Example 3
r	3x + 2y = 1
 Multiply the 1st 	4x + 3y = -2
equation by 3 and the	
2^{nd} equation by -2 so the	
coefficients of the same	
but with opposite signs	
but white opposite signs.	
 Eliminate y by adding 	
the system of equations.	
• Solve for x .	
Replace the value of x in	
one of the equations to	
solve for <i>y</i> .	

Let's Practice:

7x - 3y = -53x + 2y = 11

If you ELIMINATE both variables and you are left with a TRUE statement, then the system of equations has INFINITE SOLUTIONS. A FALSE statement means there is NO SOLUTION.