\qquad
\qquad Using Linear Combinations to Solve a Linear System

Learning Goal:

To solve a system of equations algebraically using linear combinations (elimination).

Solving Systems of Equations

1) Use \qquad to get an approximate answer or if the lines are easy to graph, i.e. slope-intercept form.
2) Use \qquad if one variable can be easily replaced by it's value or an expression that includes the other variable, i.e. $y=$ or $x=$.
3) Use \qquad when it easy to eliminate a variable by
\qquad or \qquad the system of equations.

Solving a System of Equations Using Linear Combinations

1. \qquad so common terms (like x and y) line up.
2. \qquad . The coefficients should be equal, but with
opposite signs.
a. Does one of the variables have the same coefficient in both equations?
b. Can you multiply one or both equations by a number so one of the variables will have the same coefficient in both equations? Hint: find the LCM (least common multiple).
3. \qquad to eliminate one of the variables.
4. \qquad .
5. Plug the solution into one of the equations to \qquad -.
6. \qquad your solution \qquad .

Solving a System by Adding Equations

Steps:	
- Eliminate y by adding	$2 x+5 y=17$ the system of equations. $6 x-5 y=-9$
- Solve for x.	
- Replace the value of x in	
one of the equations to solve for y.	

Let's Practice:

$$
\begin{aligned}
2 x+3 y & =11 \\
-2 x+9 y & =1
\end{aligned}
$$

What if the $2^{\text {nd }}$ equation was $2 x-9 y=-1$? How would you solve it?

Solving a System by Multiplying One Equation

Steps:	$15 y=2 x-32$ $-7 x+5 y=-17$		
- Stack the equations so common terms line up.			
- Multiply the 2nd equation			
by -3 so the coefficients			
of y are equal but with			
opposite signs.		$:$	- Eliminate y by adding
:---			
the system of equations.	\quad	- Solve for x.	
:---			
- Replace the value of x in			
one of the equations to			
solve for y.			

Let's Practice:

$$
\begin{gathered}
6 x+3 y=-6 \\
-2 x+5 y=14
\end{gathered}
$$

Steps:	Example $\mathbf{3}$
- Multiply the $1^{\text {st }}$	
equation by 3 and the	
2nd equation by -2 so the	
coefficients of the same	
variable are the equal	
but with opposite signs.	
$4 x+3 y=-2$	

Let's Practice:

$$
\begin{aligned}
& 7 x-3 y=-5 \\
& 3 x+2 y=11
\end{aligned}
$$

