

#### Learning Goal:

To solve a system of equations algebraically using linear combinations (elimination).

# **Solving Systems of Equations**

- 1) Use graphing to get an approximate answer or if the lines are easy to graph, i.e. slope-intercept form.
- Use <u>substitution</u> if one variable can be easily replaced by it's value or an expression that includes the other variable, i.e. *y* = or *x* =.
- Use <u>linear combinations</u> when it easy to eliminate a variable by <u>adding</u> or <u>subtracting</u> the system of equations.

### Solving a System of Equations Using Linear Combinations

- 1. **<u>Stack the system of equations</u>** so common terms (like *x* and *y*) line up.
- 2. <u>Choose which variable to eliminate</u>. The coefficients should be equal, but with opposite signs.
  - a. Does one of the variables have the same coefficient in both equations?
  - *b.* Can you multiply one or both equations by a number so one of the variables will have the same coefficient in both equations? Hint: find the LCM (least common multiple).
- 3. <u>Add the system of equations</u> to eliminate one of the variables.
- 4. <u>Solve for one variable</u>.
- 5. Plug the solution into one of the equations to **solve for the other variable**.
- 6. <u>Write</u> your solution <u>as an ordered pair</u>.

## Solving a System by Adding Equations

| Steps:                                                                                     | Example 1                                                         |                                                          |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|
| <ul> <li>Eliminate <i>y</i> by adding<br/>the system of equations.</li> </ul>              | 2x + 5y = 17 $6x - 5y = -9$                                       |                                                          |
| • Solve for <i>x</i> .                                                                     | 2x + 5y = 17<br>6x - 5y = -9                                      | Since $5y + -5y = 0$ , add the equations to eliminate y. |
| <ul> <li>Replace the value of x<br/>in one of the equations<br/>to solve for y.</li> </ul> | 8x + 0 = 8 $8x = 8$ $x = 1$                                       |                                                          |
|                                                                                            | 2x + 5y = 17<br>2(1) + 5y = 17<br>2 + 5y = 17<br>5y = 15<br>y = 3 | The solution is (1, 3).                                  |
|                                                                                            |                                                                   |                                                          |

2x + 3y = 11-2x + 9y = 1

The solution is (4, 1).

What if the  $2^{nd}$  equation was 2x - 9y = -1? How would you solve it?

| Solving a System by Multiplying One Equation |
|----------------------------------------------|
|----------------------------------------------|

| Steps:                                                                                                                                        | Example 2                                        |                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|
| <ul> <li>Stack the equations so<br/>common terms line up.</li> </ul>                                                                          | 15y = 2x - 32 -7x + 5y = -17                     |                                     |
| <ul> <li>Multiply the 2<sup>nd</sup> equation<br/>by -3 so the coefficients<br/>of <i>y</i> are equal but with<br/>opposite signs.</li> </ul> | -2x + 15y = -32<br>21x - 15y = 51                | $\rightarrow$ [-7x + 5y = -17] x -3 |
| <ul> <li>Eliminate <i>y</i> by adding<br/>the system of equations.</li> </ul>                                                                 | 19x + 0 = 19<br>19x = 19<br>x = 1                |                                     |
| • Solve for <i>x</i> .                                                                                                                        | -2x + 15y = -32                                  |                                     |
| <ul> <li>Replace the value of x in<br/>one of the equations to</li> </ul>                                                                     | -2(1) + 15y = -32<br>-2 + 15y = -32<br>15y = -30 |                                     |
| solve for <i>y</i> .                                                                                                                          | y = -2                                           | The solution is (1, -2).            |
|                                                                                                                                               |                                                  |                                     |

Let's Practice:

6x + 3y = -6-2x + 5y = 14

The solution is (-2, 2).

# Solving a System by Multiplying Both Equations

| Steps:                                                                    | Example 3                                                                              |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                           | 3x + 2y = 1                                                                            |
| <ul> <li>Multiply the 1<sup>st</sup><br/>equation by 3 and the</li> </ul> | 4x + 3y = -2                                                                           |
| $2^{nd}$ equation by -2 so the                                            | $3x + 2y = 1 \rightarrow [3x + 2y = 1] \times 3$                                       |
| coefficients of the same                                                  | $\underline{4x + 3y = -2} \qquad \rightarrow \qquad \underline{[4x + 3y = -2]}  x - 2$ |
| variable are the equal                                                    |                                                                                        |
| but with opposite signs.                                                  | 9x + 6y = 3                                                                            |
|                                                                           | $\frac{-8x - 6y = 4}{x + 0} = 7$                                                       |
| <ul> <li>Eliminate y by adding</li> </ul>                                 | $\begin{array}{c} x + 0 = 7 \\ x = 7 \end{array}$                                      |
| the system of equations.                                                  | <b>x</b> -7                                                                            |
| • Solve for <i>x</i> .                                                    | 3x + 2y = 1                                                                            |
|                                                                           | 3(7) + 2y = 1                                                                          |
| • Replace the value of <i>x</i> in                                        | 21 + 2y = 1                                                                            |
| one of the equations to                                                   | 2y = -20<br>y = -10                                                                    |
| solve for <i>y</i> .                                                      | y10                                                                                    |
|                                                                           | The solution is (7, –10).                                                              |
|                                                                           |                                                                                        |
|                                                                           |                                                                                        |
|                                                                           |                                                                                        |
|                                                                           |                                                                                        |

## Let's Practice:

7x - 3y = -53x + 2y = 11

The solution is (1, 4).

If you ELIMINATE both variables and you are left with a TRUE statement, then the system of equations has INFINITE SOLUTIONS. A FALSE statement means there is NO SOLUTION.