\qquad Using Linear Combinations to Solve a Linear System

Learning Goal:

To solve a system of equations algebraically using linear combinations (elimination).

Solving Systems of Equations

1) Use graphing to get an approximate answer or if the lines are easy to graph, i.e. slope-intercept form.
2) Use substitution if one variable can be easily replaced by it's value or an expression that includes the other variable, i.e. $y=$ or $x=$.
3) Use linear combinations when it easy to eliminate a variable by adding or subtracting the system of equations.

Solving a System of Equations Using Linear Combinations

1. Stack the system of equations so common terms (like x and y) line up.
2. Choose which variable to eliminate. The coefficients should be equal, but with opposite signs.
a. Does one of the variables have the same coefficient in both equations?
b. Can you multiply one or both equations by a number so one of the variables will have the same coefficient in both equations? Hint: find the LCM (least common multiple).
3. Add the system of equations to eliminate one of the variables.
4. Solve for one variable.
5. Plug the solution into one of the equations to solve for the other variable.
6. Write your solution as an ordered pair.

Solving a System by Adding Equations

Steps:	Example 1	
- Eliminate y by adding the system of equations.	$\begin{aligned} & 2 x+5 y=17 \\ & 6 x-5 y=-9 \end{aligned}$	
- Solve for x.	$\begin{aligned} & 2 x+5 y=17 \\ & 6 x-5 y=-9 \end{aligned}$	Since $5 \mathrm{y}+-5 \mathrm{y}=0$, add the equations to eliminate y .
- Replace the value of x in one of the equations to solve for y.	$\begin{array}{r} 8 x+0=8 \\ 8 x=8 \\ x=1 \end{array}$	
	$2 \mathrm{x}+5 \mathrm{y}=17$	
	$2(1)+5 y=17$	
	$2+5 y=17$	
	$5 \mathrm{y}=15$	
	$\mathrm{y}=3$	The solution is (1, 3).

Let's Practice:

$$
\begin{aligned}
2 x+3 y & =11 \\
-2 x+9 y & =1
\end{aligned}
$$

The solution is $(4,1)$.

What if the $2^{\text {nd }}$ equation was $2 x-9 y=-1$? How would you solve it?

Solving a System by Multiplying One Equation

Let's Practice:

$$
\begin{aligned}
6 x+3 y & =-6 \\
-2 x+5 y & =14
\end{aligned}
$$

The solution is $(-2,2)$.

Steps:	Example 3
	$3 x+2 y=1$
- Multiply the $1^{\text {st }}$	$4 x+3 y=-2$
$2{ }^{\text {nd }}$ equation by -2 so the	$3 \mathrm{x}+2 \mathrm{y}=1 \rightarrow[3 \mathrm{x}+2 \mathrm{y}=1] \times 3$
coefficients of the same	$\underline{4 x+3 y=-2} \rightarrow \quad[4 x+3 y=-2] x-2$
variable are the equal but with opposite signs.	$\begin{array}{r} 9 x+6 y=3 \\ -8 x-6 y=4 \end{array}$
- Eliminate y by adding the system of equations.	$\begin{array}{r} x+0=7 \\ x=7 \end{array}$
- Solve for x. - Replace the value of x in one of the equations to solve for y.	$\begin{array}{r} 3 x+2 y=1 \\ 3(7)+2 y=1 \end{array}$
	$\begin{aligned} 21+2 y & =1 \\ 2 y & =-20 \\ y & =-10 \end{aligned}$
	The solution is ($7,-10$).

Let's Practice:

$$
\begin{aligned}
& 7 x-3 y=-5 \\
& 3 x+2 y=11
\end{aligned}
$$

The solution is (1, 4).

If you ELIMINATE both variables and you are left with a TRUE statement, then the system of equations has INFINITE SOLUTIONS. A FALSE statement means there is NO SOLUTION.

