Page 313

Let the Transformations
 Translations of Linear and Exponential Functions

LEARNING GOALS

In this lesson, you will:

- Translate linear and exponential functions vertically.
- Translate linear and exponential functions horizontally.

KEY TERMS

- basic function
- transformation
- vertical translation
- coordinate notation
- argument of a function
- horizontal translation

Consider the three linear functions shown.

- $g(x)=x$
- $c(x)=(x)+3$
- $d(x)=(x)-3$

Also, known as the "parent function"

The first function is the basic function. A basic function is the simplest function of its type. In this case, $g(x)=x$ is the simplest linear function. It is in the form $f(x)=a x+b$, where $a=1$ and $b=0$.

You can write the given functions $c(x)$ and $d(x)$ in terms of the basic function $g(x)$. For example, because $g(x)=x$, you can substitute $g(x)$ for x in the equation for $c(x)$, as shown.

$$
\begin{aligned}
& c(x)=(x)+3 \\
& c(x)=g(x)+3
\end{aligned} \quad \text { Just replace } x \text { with } g(x)
$$

1. Write the function $d(x)$ in terms of the basic function $g(x)$.
\qquad
2. Describe the operation performed on the basic function $g(x)$ to result in each of the equations for $c(x)$ and $d(x)$.
For $c(x)$, add 3 to $g(x)$.
For $d(x)$, we subtract 3 from $g(x)$.
3. Use Desmos.com to graph each function: $g(x), c(x)$ and $d(x)$. Graph and label your functions

(2	$g(x)=x$
2	$c(x)=x+3$
(2	$d(x)=x-3$

4. Compare the y-intercepts of the graphs of $c(x)$ and $d(x)$ to the y-intercept of the basic function $g(x)$. What do you notice?
For $c(x)$, the y-intercept moves $g(x)$ UP 3 units.
For $d(x)$, the y-intercept moves $g(x)$ DOWN 3 units.
5. Write the y-value of each ordered pair for the three given functions.

$g(x)=x$	$c(x)=(x)+3$	$d(x)=(x)-3$
$(-2,-2$)	$(-2,1)$	$(-2,-5)$
$(-1,-1$	$(-1,2)$	$(-1,4)$
$(0,0)$	$(0, \xrightarrow{3})$	$(0, \underline{-3})$
$(1, \xrightarrow{1})$	$(1, \stackrel{4}{\rightarrow})$	$(1, \xrightarrow{-2})$
$(2, \underline{2})$	$(2, \xrightarrow{5})$	$(2,-1)$

6. Use the table to compare the ordered pairs of the graphs of $c(x)$ and $d(x)$ to the ordered pairs of the graph of the basic function $g(x)$. What do you notice?

The x-coordinates never change.
The y-coordinate of $c(x)=$ the y-coordinate of $g(x)$ plus 3 .
The y-coordinate of $d(x)=$ the y-coordinate of $g(x)$ minus 3 .

A vertical translation is a type of transformation that shifts the entire graph UP or DOWN.
A vertical translation affects the y-coordinate of each point on the graph.

A vertical shift occurs when a number is added to or subtracted from the whole basic function!

Page 316

\square
Now, let's consider the three exponential functions shown.

- $h(x)=2^{x}$
- $s(x)=\left(2^{x}\right)+3$
- $t(x)=\left(2^{x}\right)-3$

In this case, $h(x)=2^{x}$ is the basic function because it is the simplest exponential function with a base of 2. It is in the form $f(x)=a \cdot b^{x}$, where $a=1$ and $b=2$.
8. Write the functions $s(x)$ and $t(x)$ in terms of the basic function $h(x)$. Then, describe the operation performed on the basic function $h(x)$ to result in each of the equations for $s(x)$ and $t(x)$.

$$
\begin{aligned}
& s(x)=\quad h(x)+3 \\
& \text { Just replace } 2^{\mathrm{x}} \text { with } h(x) \text {. } \\
& t(x)=
\end{aligned}
$$

For $s(x)$, add 3 to $h(x)$.
For $t(x)$, we subtract 3 from $h(x)$.
9. Use Desmos.com to graph each function: $h(\mathrm{x}), \mathrm{s}(x)$, and $t(x)$. Label your functions.

(1)	$h(x)=2^{x}$
2	$s(x)=\left(2^{x}\right)+3$
(1)	$t(x)=\left(2^{x}\right)-3$

10. Compare the y-intercepts of the graphs of $s(x)$ and $t(x)$ to the y-intercept of the basic function $h(x)$. What do you notice? Are the results the same as when you compared the graphs of the linear functions in Question 4?
For $s(x)$, the y-intercept moves $h(x)$ UP 3 units.
For $t(x)$, the y-intercept moves $h(x)$ DOWN 3 units.
Yes, the results are the same.
11. Write the y-value of each ordered pair for the three given functions.

$h(x)=2^{x}$	$s(x)=\left(2^{x}\right)+3$	$t(x)=\left(2^{x}\right)-3$
$\begin{gathered} \left(-2, \frac{1}{4}\right) \\ \text { or } \frac{1}{0.25} \end{gathered}$	$\left(-2, \frac{13}{\frac{4}{4}}\right)$	$\frac{\left(-2, \frac{\left.-\frac{11}{4}\right)}{\text { or }-2.75}\right)}{\text { (}}$
$\left(-1, \frac{\frac{1}{2}}{\text { or } 0.5}\right)$	$\left(-1, \frac{\frac{7}{2}}{\text { or } 3.5}\right)$	$\left(-1, \frac{\left.-\frac{5}{2}\right)}{\text { or }-2.5}\right.$
$(0,1$)	$(0,4-$	$(0, \xrightarrow{-2})$
$(1, \underline{2})$	(1, 5	$(1, \underline{-1})$
$(2, \xrightarrow{4})$	(2, 7	(2, 1

12. Use the table to compare the ordered pairs of the graphs of $s(x)$ and $t(x)$ to the ordered pairs of the graph of the basic function $h(x)$. What do you notice? Are the results the same as when you compared the y-values for the linear functions in Question 6?

The x-coordinates never change.
The y-coordinate of $s(x)=$ the y-coordinate of $h(x)$ plus 3.
The y-coordinate of $t(x)=$ the y-coordinate of $h(x)$ minus 3 .
Yes, the results are the same.
13. Explain how you know that the graphs of $s(x)$ and $t(x)$ are vertical translations of the graph of $h(x)$.
The x-coordinates stay the same.
The graph of $s(x)$ moves $h(x)$ UP 3 units.
The graph of $t(x)$ moves $h(x)$ DOWN 3 units.

