Page 313

Let the Transformations
 Translations of Linear and Exponential Functions

LEARNING GOALS

In this lesson, you will:

- Translate linear and exponential functions vertically.
- Translate linear and exponential functions horizontally.

KEY TERMS

- basic function
- transformation
- vertical translation
- coordinate notation
- argument of a function
- horizontal translation

Skip to Page 319

PROBLEM 2 Horizontal Translations

Consider the three exponential functions shown, where $h(x)=2^{x}$ is the basic function.

- $h(x)=2^{x}$

Also, known as the

- $v(x)=2^{(x+3)}$
- $w(x)=2^{(x-3)}$

In Problem 1 Vertical Translations, the operations that produced the vertical translations were performed on the function $h(x)$. That is, 3 was added to $h(x)$ and 3 was subtracted from $h(x)$. In this problem, the operations are performed on x, which is the argument of the function. The argument of a function is the variable on which the function operates. So, in this case, 3 is added to x and 3 is subtracted from x.

You can write the given functions $v(x)$ and $w(x)$ in terms of the basic function $h(x)$. To write $v(x)$ in terms of $h(x)$, you just substitute $x+3$ into the argument for $h(x)$, as shown.

$$
\begin{gathered}
h(x)=2^{x} \quad \text { Replace } x \text { with } x+3 . \\
v(x)=h(x+3)=2^{(x+3)}
\end{gathered}
$$

So, $x+3$ replaces the variable x in the function $h(x)=2^{x}$.

1. Write the function $w(x)$ in terms of the basic function $h(x)$.

$$
w(x)=h(x-3)=2^{(x-3)} \quad \text { Replace } x \text { with } x-3
$$

2. Use Desmos.com to graph each function: $h(x), v(x)$ and $w(x)$. Then, sketch the graph and label each function.

3. Compare the graphs of $v(x)$ and $w(x)$ to the graph of the basic function. What do you notice?
This is tricky!!! Look carefully.
The graph of $v(x)$ shifts to the LEFT 3 units.
The graph of $w(x)$ shifts to the RIGHT 3 units.
4. Write the x-value of each ordered pair for the three given functions. You can use your graphing calculator to determine the x-values.

Use the graphs in Desmos.com to find the x values.

$h(x)=2^{x}$	$v(x)=2^{(x+3)}$	$w(x)=2^{(x-3)}$
$\left(-2, \frac{1}{4}\right)$	$\left(\stackrel{-5}{ }{ }^{4}\right)$	$\left(\underline{1}, \frac{1}{4}\right)$
$\left(-1, \frac{1}{2}\right)$	$\left(\stackrel{-4}{ }, \frac{1}{2}\right)$	$\left(2, \frac{1}{2}\right)$
(0, 1)	$(-3,1)$	$(3,1)$
$(1) 2)$	$(\xrightarrow[-2,2)]{ }$	$\xrightarrow{4}, 2)$
$(2,4)$	$(-1,4)$	$(5,4)$

5. Use the table to compare the ordered pairs of the graphs of $v(x)$ and $w(x)$ to the ordered pairs of the graph of the basic function $h(x)$. What do you notice?

The y-coordinates stay the same.
The x-coordinate of $v(x)=$ the x-coordinate of $h(x)$ minus 3 .
The x-coordinate of $w(x)=$ the x-coordinate of $h(x)$ plus 3 .

A horizontal translation of a graph is a shift of the entire graph LEFT or RIGHT. A horizontal translation affects the x-coordinate of each point on the graph.

Graphing Horizontal and Vertical Translations of Linear and Exponential Functions

	Function Form	Type of Translation	Description of Translation
	$f(x)=x+b$	Vertical translation	UP b units
Linear Functions	$f(x)=x-b$	Vertical translation	DOWN b units
	$f(x)=(x+b)$	Horizontal translation	LEFT b units
	$f(x)=(x-b)$	Horizontal translation	RIGHT b units
	$f(x)=b^{x}+k$	Vertical translation	UP k units
Exponential Functions	$f(x)=b^{x}-k$	Vertical translation	DOWN k units
	$f(x)=b^{(x+c)}$	Horizontal translation	LEFT c units
	$f(x)=b^{(x-c)}$	Horizontal translation	RIGHT c units

