\qquad
Simple: $A=P+(P r) t$
Compound: $A=P(1+r)^{t}$

1. Adil has $\$ 1,200$ to deposit into an account with an interest rate of 5%. Use the simple and compound interest formulas to complete the table. Round to the NEAREST CENT.
a. If it costs $\$ 300.00$ to have your savings in a compound interest account, would it make sense to use that account if you were only going to save your money for 10 years?
b. What about for 20 years?

Quantity	Time	Simple Interest Balance	Compound Interest Balance
Units			
	0		
	3		
10			
20			

2. Bryce City has a population of 26,000 . Its population is increasing at a rate of 3.5%.

- Write a function to represent the population over time. $\quad P(t)=P(1+r)^{t}$
- Determine the population after a given number of years. Round to the nearest WHOLE NUMBER.
a. 2 years
b. 10 years
c. 20 years

3. Khanyaville has a population of 85,000 . Its population is decreasing at a rate of 2.5%.

- Write a function to represent the population over time. $\quad P(t)=P(1-r)^{t}$
- Determine the population after a given number of years. Round to the nearest WHOLE NUMBER.
a. 8 years
b. 5 years
c. 16 years

Complete the table. Graph each exponential function. Identify the y-intercept, asymptote, domain, and range. Type each expression into the calculator exactly as it is written, replacing x with its value.
4. $y=2^{x}$

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

y-intercept:
domain:

range:
5. $y=\left(\frac{1}{4}\right)^{x}$

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

y-intercept:
domain:

asymptote:
range:
7. $y=-3 \cdot\left(\frac{1}{2}\right)^{x}$

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

y-intercept:
domain:
asymptote:
range:
8. Write the equation of each new function $g(x)$ after the translation.
a. $f(x)=-8 x$ after a translation $\mathbf{6}$ units to the right
b. $f(x)=4^{x}$ after a translation 3 units up
c. $f(x)=2 x^{2}$ after a translation 2 units left
d. $f(x)=4 x$ after a translation 7 units down
e. $f(x)=\left(\frac{1}{2}\right)^{x}$ after a translation 4 units to the right
f. $f(x)=x^{2}$ after a translation 4 units down
9. Describe each graph in relation to its basic function, i.e. vertical translation up 8 units.
a. Compare the basic function $f(x)=x^{2}$ to $g(x)=(x+2)^{2}$
b. Compare the basic function $f(x)=b^{x}$ to $g(x)=b^{x}+1$
c. Compare the basic function $f(x)=2^{x}$ to $g(x)=2^{(x-7)}$
d. Compare the basic function $f(x)=4 x^{2}$ to $g(x)=4(x-9)^{2}$
e. Compare the basic function $f(x)=b^{x}$ to $g(x)=b^{(x-2)}$
f. Compare the basic function $f(x)=\left(\frac{1}{2}\right)^{x}$ to $g(x)=\left(\frac{1}{2}\right)^{(x+4)}$
10. Each coordinate plane shows the graph of the basic function. Sketch the graph of $g(x)$.
a. $g(x)=b^{(x-4)}$

c. $g(x)=f(x)+2$

e. $g(x)=b^{x}-3$

b. $g(x)=f(x+5)$

d. $g(x)=b^{x}-7$

f. $g(x)=b^{(x-3)}$

