\qquad
\qquad Properties of Rational Exponents

Learning Goals

- Simplify expressions with rational exponents.
- Write rational powers using radicals.

A rational exponent is \qquad .

You can write each nth root using a rational exponent. If n is an integer greater than 1, then
\qquad .

Write each radical as a power.

1. $\sqrt[3]{7}$
2. $\sqrt[5]{x}$
3. \sqrt{y}

Write each power as a radical.

1. $8^{\frac{1}{4}}$
2. $z^{\frac{1}{6}}$
3. $m^{\frac{1}{7}}$

Converting between Radical Form and Rational Exponent Form

Think "EOI" - Exponent over Index"

Write each expression in radical form. Show your work and simplify your answer, if possible.

1. $4^{\frac{3}{2}}$
2. $5^{\frac{3}{4}}$
3. $x^{\frac{4}{5}}$
4. $y^{\frac{2}{3}}$

Write each expression in rational exponent form. Show your work and simplify your answer, if possible.

1. $(\sqrt[4]{2})^{3}$
2. $(\sqrt{5})^{4}$
3. $(\sqrt[5]{x})^{8}$
4. $(\sqrt[5]{y})^{10}$
