

Learning Goals

- Simplify expressions with rational exponents.
- Write rational powers using radicals.

A *rational exponent* is <u>an exponent written as a fraction</u>.

You can write each *n*th root using a rational exponent. If n is an integer greater than 1, then $\sqrt[n]{a} = a^{\frac{1}{n}}$

.....

Write each radical as a power.

1. ∛7	2.	$\sqrt[5]{x}$	3.	\sqrt{y}
$7^{\frac{1}{3}}$		$x^{\frac{1}{5}}$		$y^{\frac{1}{2}}$
Write each power as a radical.				
1. $8^{\frac{1}{4}}$	2.	$z^{\frac{1}{6}}$	3.	$m^{\frac{1}{7}}$

 $\sqrt[4]{8}$ $\sqrt[6]{z}$ $\sqrt[n]{m}$

Converting between Radical Form and Rational Exponent Form

Think "EOI" - Exponent over Index"

Write each expression in <u>radical form</u>. Show your work and simplify your answer, if possible.

1.
$$4^{\frac{3}{2}}$$

 $\sqrt{4^3} = \sqrt{64} = 8$
or
 $(\sqrt{4})^3 = 2^3 = 8$
2. $5^{\frac{3}{4}}$
 $\sqrt{5^3} = \sqrt[4]{125}$
 $\sqrt{4^5}$
 $\sqrt{5^4}$
 $\sqrt{5^4}$

Write each expression in <u>rational exponent form</u>. Show your work and simplify your answer, if possible.

1.
$$(\sqrt[4]{2})^3$$

2. $(\sqrt{5})^4$
3. $(\sqrt[5]{x})^8$
4. $(\sqrt[5]{y})^{10}$
 $2^{\frac{3}{4}}$
 $5^{\frac{4}{2}} = 5^2 = 25$
 $x^{\frac{8}{5}}$
 $y^{\frac{10}{5}} = y^2$