\qquad
\qquad Properties of Rational Exponents

Learning Goals

- Simplify expressions with rational exponents.
- Write rational powers using radicals.

A rational exponent is an exponent written as a fraction.
You can write each nth root using a rational exponent. If n is an integer greater than 1 , then $\sqrt[n]{a}=a^{\frac{1}{n}}$

Write each radical as a power.

1. $\sqrt[3]{7}$
2. $\sqrt[5]{x}$
3. \sqrt{y}
$x^{\frac{1}{5}}$
$y^{\frac{1}{2}}$

Write each power as a radical.

1. $8^{\frac{1}{4}}$
2. $z^{\frac{1}{6}}$
3. $m^{\frac{1}{7}}$
$\sqrt[6]{z}$
$\sqrt[7]{m}$

Converting between Radical Form and Rational Exponent Form

Think "EOI" - Exponent over Index"

Write each expression in radical form. Show your work and simplify your answer, if possible.

1. $4^{\frac{3}{2}}$
$\sqrt{4^{3}}=\sqrt{64}=8$
or
$(\sqrt{4})^{3}=2^{3}=8$
2. $5^{\frac{3}{4}}$
$\sqrt[4]{5^{3}}=\sqrt[4]{125}$
3. $x^{\frac{4}{5}}$
$\sqrt[5]{x^{4}}$
4. $y^{\frac{2}{3}}$
$\sqrt[3]{y^{2}}$

Write each expression in rational exponent form. Show your work and simplify your answer, if possible.

1. $(\sqrt[4]{2})^{3}$
2. $(\sqrt{5})^{4}$
3. $(\sqrt[5]{x})^{8}$
4. $(\sqrt[5]{y})^{10}$
$2^{\frac{3}{4}}$

$$
5^{\frac{4}{2}}=5^{2}=25
$$

$$
x^{\frac{8}{5}}
$$

$$
y^{\frac{10}{5}}=y^{2}
$$

