\qquad
\qquad Properties of Rational Exponents

Learning Goals

- Write an expression in radical form.
- Find the nth root of a number.

If $\underbrace{5 \cdot 5 \cdot 5}_{3}=5^{3}=125$, then \qquad -.

Parts of a Radical

\qquad

For each radical, determine the index and the radicand.

1. $\sqrt{24}$
index $=$ \qquad
radicand $=$ \qquad
2. $\sqrt[4]{16 x y^{2}}$
index $=$ \qquad
radicand $=$ \qquad
3. $\sqrt[3]{-162}$
index $=$ \qquad
radicand $=$ \qquad

If the \qquad is not written, it is automatically a \qquad .

A number \boldsymbol{a} is a \qquad of \boldsymbol{b} if $\boldsymbol{a}^{3}=\boldsymbol{b}$. Thus, 5 is a \qquad of 125 because \qquad $=\underbrace{5 \cdot 5 \cdot 5}_{3}=$ \qquad .

Complete each statement

1. $\sqrt[3]{8}=$ \qquad because \qquad 2. $\sqrt[3]{64}=$ because \qquad 3. $\sqrt[3]{27}=$ \qquad because \qquad

If \boldsymbol{n} represents a positive number, then \boldsymbol{a} is the $n t h$ root of \boldsymbol{b} if $\boldsymbol{a}^{n}=\boldsymbol{b}$.
For example, 5 is the \qquad of 625 because \qquad $=\underbrace{5 \cdot 5 \cdot 5 \cdot 5}_{4}=$ \qquad

Complete each statement.

1. The number 2 is the $4^{\text {th }}$ root of 16 because \qquad .
2. The number 3 is the \qquad root of 243 because $3^{5}=243$.
3. The number -2 is the cube root of -8 because \qquad .
4. The number 4 is the \qquad root of 4096 because $4^{6}=4096$.

The \boldsymbol{n} th root of a number \boldsymbol{b} is designated as $\sqrt[n]{b}$, where \boldsymbol{n} is the index of the radical and \boldsymbol{b} is the radicand.

For example, $\sqrt{100}=10$ because \qquad .

Complete each statement.

1. $\sqrt[3]{216}=6$ because \qquad $=$ \qquad .
2. $\sqrt[4]{81}=3$ because \qquad $=$ \qquad .
3. \qquad $=$ \qquad because $(-2)^{5}=-32$.

A power can be positive (+) or negative (-) depending on the base and the exponent.

Base	Exponent	Power	Example
Positive (+)	Even number $(2,4,6 \ldots)$		
Negative (-)	Even number $(2,4,6 \ldots)$		
Positive (+)	Odd number $(1,3,5 \ldots)$		
Negative (-)	Odd number $(1,3,5 \ldots)$		

