Algebra 1: 5.	5 Guided Notes - Part 1	Name	Period	_
Properties of	Rational Exponents			
	 <u>Learning Goals</u> Write an expression in ro Find the nth root of a nu 	adical form. mber.		

A	

If $5 \cdot 5 \cdot 5_{3} = 5^{3} = 125$, then _____.

Parts of a Radical	For each radical, determine the index and the radicand. 1. $\sqrt{24}$ index = radicand =
\mathbf{N}	2. $\sqrt[n]{16xy^2}$ index = radicand =
	3. $\sqrt[3]{-162}$ index = radicand =
If the is not written, it is automatical	lly a
A number <i>a</i> is a of <i>b</i> if $a^3 =$ 125 because = $\underbrace{5 \cdot 5 \cdot 5}_{3} =$	<i>b</i> . Thus, 5 is a of
Complete each statement	
1. $\sqrt[3]{8} =$ because 2. $\sqrt[3]{64} =$ because	e 3. $\sqrt[3]{27}$ = because

If <i>n</i> represents a positive number, then <i>a</i> is the <i>nth root</i> of <i>b</i> if $a^n = b$.					
For example, 5 is the	_ of 625 because	$\underline{} = \underbrace{5 \cdot 5 \cdot 5 \cdot 5}_{4} = \underline{}.$			

Complete each statement.

- 1. The number 2 is the 4^{th} root of 16 because _____.
- 2. The number 3 is the _____ root of 243 because $3^5 = 243$.
- 3. The number –2 is the <u>cube root</u> of –8 because _____.
- 4. The number 4 is the _____ root of 4096 because $4^6 = 4096$.

The *n*th root of a number *b* is designated as $\sqrt[n]{b}$, where *n* is the <u>index</u> of the radical and *b* is the <u>radicand</u>.

For example, $\sqrt{100} = 10$ because _____.

Complete each statement.

- 1. $\sqrt[3]{216} = 6$ because _____ = ____.
- 2. $\sqrt[4]{81} = 3$ because _____ = ____.
- 3. _____ = _____ because $(-2)^5 = -32$.

A power can be positive (+) or negative (-) depending on the base and the exponent.

Base	Exponent	Power	Example
Positive (+)	Even number (2, 4, 6)		
Negative (-)	Even number (2, 4, 6)		
Positive (+)	Odd number (1, 3, 5)		
Negative (-)	Odd number (1, 3, 5)		