

Learning Goals

- Write an expression in radical form.
- Find the nth root of a number.

If $5 \cdot 5 \cdot 5 = 5^3 = 125$, then $\sqrt[3]{125} = 5$.

Parts of a Radical

For each radical, determine the index and radicand.

- 1. $\sqrt{24}$ index = 2radicand = $\underline{24}$
- 2. $\sqrt[4]{16xy^2}$ index = 4 $radicand = 16xy^2$
- 3. $\sqrt[3]{-162}$ index = 3radicand = -162

If the index is not written, it is automatically a 2.

A number a is a <u>cube root</u> of b if $a^3 = b$. Thus, 5 is a <u>cube root</u> of 125 because $\underline{5^3} = \underline{5 \cdot 5 \cdot 5} = \underline{125}$.

Complete each statement

1.
$$\sqrt[3]{8} = 2$$
 because $2^3 = 8$

2.
$$\sqrt[3]{64} = 4$$
 because $4^3 = 64$

1.
$$\sqrt[3]{8} = 2$$
 because $2^3 = 8$ 2. $\sqrt[3]{64} = 4$ because $4^3 = 64$ 3. $\sqrt[3]{27} = -3$ because $(-3)^3 = -27$

If *n* represents a positive number, then *a* is the *nth root* of *b* if $a^n = b$.

For example, 5 is the $\frac{4^{th} \text{ root}}{4^{th} \text{ root}}$ of 625 because $\frac{5^4}{4^4} = \underbrace{5 \cdot 5 \cdot 5 \cdot 5}_{4} = \underbrace{625}_{4}$.

Complete each statement.

- 1. The number 2 is the $\frac{4^{th}}{100}$ of 16 because $\frac{2^4}{100}$ = $\frac{16}{100}$.
- 2. The number 3 is the $\frac{5th}{}$ root of 243 because $3^5 = 243$.
- 3. The number -2 is the <u>cube root</u> of -8 because $(-2)^3 = -8$.
- 4. The number 4 is the 6^{th} root of 4096 because $4^6 = 4096$.

The nth root of a number b is designated as $\sqrt[n]{b}$, where n is the \underline{index} of the radical and b is the radicand.

For example, $\sqrt{100} = 10$ because $10^2 = 100$.

Complete each statement.

- 1. $\sqrt[3]{216} = 6$ because $6^3 = 216$.
- 2. $\sqrt[4]{81} = 3$ because $\frac{3^4}{81} = \frac{81}{81}$.
- 3. $\sqrt[5]{-32} = -2$ because $(-2)^5 = -32$.

A power can be positive (+) or negative (-) depending on the base and the exponent.

Base	Exponent	Power	Example
Positive (+)	Even number (2, 4, 6)	Positive The product of positive #s is always positive.	5 ² = 25
Negative (-)	Even number (2, 4, 6)	Positive The product of an even number of negative #s is always positive.	$(-5)^2 = 25$
Positive (+)	Odd number (1, 3, 5)	Positive The product of positive #s is always positive.	23 = 8
Negative (-)	Odd number (1, 3, 5)	Negative The product of an odd number of negative #s is always negative.	$(-2)^3 = -8$