\qquad
\qquad Properties of Rational Exponents

Learning Goals

- Write an expression in radical form.
- Find the nth root of a number.

If $\underbrace{5 \cdot 5 \cdot 5}_{3}=5^{3}=125$, then $\sqrt[3]{125}=5$.

Parts of a Radical

radical

For each radical, determine the index and radicand.

1. $\sqrt{24}$
index $=\underline{2}$
radicand $=\underline{24}$
2. $\sqrt[4]{16 x y^{2}}$
index $=\underline{4}$
radicand $=\underline{16 x y^{2}}$
3. $\sqrt[3]{-162}$
index $=\underline{3}$
radicand $=\underline{-162}$

If the index is not written, it is automatically a 2.

A number \boldsymbol{a} is a cube root of \boldsymbol{b} if $\boldsymbol{a}^{3}=\boldsymbol{b}$. Thus, 5 is a cube root of 125 because $\underline{5^{3}}=-\underbrace{5 \cdot 5 \cdot 5}_{3}=\underline{125}$.
Complete each statement

1. $\sqrt[3]{8}=\underline{2}$ because $\underline{2}^{3}=8$
2. $\sqrt[3]{64}=\underline{4}$ because $\underline{4^{3}=64}$
3. $\sqrt[3]{27}=\underline{-3}$ because $(-3)^{3}=-27$

If \boldsymbol{n} represents a positive number, then \boldsymbol{a} is the $n t h$ root of \boldsymbol{b} if $\boldsymbol{a}^{n}=\boldsymbol{b}$.
For example, 5 is the $4^{\text {th }}$ root of 625 because $\underline{5^{4}}=\underbrace{5 \cdot 5 \cdot 5 \cdot 5}_{4}=\underline{625}$.

Complete each statement.

1. The number 2 is the $4^{\text {th }}$ root of 16 because $\underline{2}^{4}=16$.
2. The number 3 is the $5^{\text {th }}$ root of 243 because $3^{5}=243$.
3. The number -2 is the cube root of -8 because $(-2)^{3}=-8$.
4. The number 4 is the $6^{\text {th }}$ root of 4096 because $4^{6}=4096$.

The \boldsymbol{n} th root of a number \boldsymbol{b} is designated as $\sqrt[n]{\boldsymbol{b}}$, where \boldsymbol{n} is the index of the radical and \boldsymbol{b} is the radicand.

For example, $\sqrt{100}=10$ because $\underline{10^{2}=100}$.

Complete each statement.

1. $\sqrt[3]{216}=\underline{6}$ because $\underline{6^{3}}=\underline{216}$.
2. $\sqrt[4]{81}=3$ because $\underline{3^{4}}=\underline{81}$.
3. $\sqrt[5]{-32}=-2$ because $(-2)^{5}=-32$.

A power can be positive (+) or negative (-) depending on the base and the exponent.

Base	Exponent	Power	Example
Positive (+)	Even number $(2,4,6 \ldots)$	Positive The product of positive \#s is always positive.	$5^{2}=25$
Negative (-)	Even number $(2,4,6 \ldots)$	Positive The product of an even number of negative \#s is always positive.	$(-5)^{2}=25$
Positive (+)	Odd number $(1,3,5 \ldots)$	Positive The product of positive \#s is always positive.	$2^{3}=8$
Negative (-)	Odd number (1, 3, 5...)	Negative The product of an odd number of negative \#s is always negative.	$(-2)^{3}=-8$

