\qquad
Arithmetic and Geometric Sequences - Recursive Formulas
When you want to find the next term in an arithmetic or geometric sequence...
Use a \qquad .

NOW-NEXT Formula! You have a number now, what's the next number?
Determine the next terms in the given arithmetic sequence using the recursive formula.

$$
a_{n}=a_{n-1}+d
$$

Example:

Determine the next 3 terms in the sequence 30, 70, 110, . .
Find the common difference:

$$
\boldsymbol{d}=\text { common difference }=2^{\text {nd }} \text { term }-1^{\text {st }} \text { term }=70-30=40
$$

Use the recursive formula to solve:
Given the first 3 terms, find the $4^{\text {th }}, 5^{\text {th }}$, and $6^{\text {th }}$ terms.

$$
\begin{aligned}
& a_{4}=110+40=150 \\
& a_{5}=150+40=190 \\
& a_{6}=190+40=230
\end{aligned}
$$

1. Determine the next 2 terms in the sequence 16, 30, 44, 58, ...
2. Determine the next 3 terms in the sequence $-68,-83,-98, \ldots$
3. Determine the next 2 terms in the sequence $\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$

Determine the next terms in the given geometric sequence using the recursive formula.

$$
g_{n}=g_{n-1} \bullet r
$$

Example:

Determine the next 3 terms in the sequence 100, $-50,25, \ldots$
Find the common ratio:

$$
r=\text { common ratio }=\frac{2 n d \text { term }}{1 \text { st term }}=\frac{-50}{100}=-0.5
$$

Use the recursive formula to solve:
Given the first 3 terms, find the $4^{\text {th }}, 5^{\text {th }}$, and $6^{\text {th }}$ terms.

$$
\begin{aligned}
& g_{4}=25 \cdot(-0.5)=-12.5 \\
& g_{5}=-12.5 \cdot(-0.5)=6.25 \\
& g_{6}=6.25 \cdot(-0.5)=-3.125
\end{aligned}
$$

5. Determine the next 2 terms in the sequence $4,8,16,32, \ldots$
6. Determine the next 3 terms in the sequence $-5,20,-80, \ldots$
7. Determine the next 4 terms in the sequence $2,-6,18, \ldots$
8. Determine the next 2 terms in the sequence $3,1.5,0.75, \ldots$
