

Using a Ski Jump to Illustrate Slope
Chapter 4 Introduction Slope and Graphing Review
V. Write an Equation in Slope-Intercept Form Using the Graph
A.

- Find the y-intercept.

$$
y \text {-intercept }(\mathrm{b})=4
$$

- Calculate the slope using $\frac{\text { rise }}{\text { run }}$.

$$
\frac{4}{4}=1
$$

$$
\text { slope }(\mathrm{m})=\frac{\text { rise }}{\text { run }}=\ldots 1
$$

- Use the slope-intercept form to write the equation: $y=m x+b$.

$$
y=1 x+4 \text { or } y=x+4
$$

B.

If there are NO points on the line:

- Where does the line cross the y-axis? This is the y-intercept.

$$
y \text {-intercept }(\mathrm{b})=3
$$

- Where does the line intersect the corner of a square?
- Use $\frac{\text { rise }}{\text { run }}$ to calculate the slope.

$$
\text { slope }(m)=\frac{3}{4}
$$

- Use the slope-intercept form to write the equation: $y=m x+b$.

$$
y=\frac{3}{4} x
$$

VI. Horizontal and Vertical Lines

HOY

Horizontal line
0 slope
$y=$ \#
VII. Graph the Lines

$$
\begin{aligned}
& y=4 \neg \mathrm{HOY} \\
& x=2 \neg \mathrm{VUX}
\end{aligned}
$$

VUX
Vertical line \downarrow
Undefined slope

$$
x=\#
$$

Slope Dudes ปourney

VIII. Convert Point-Slope to Slope-Intercept Form

$y \quad y_{1}=m\left(\begin{array}{ll}x & x_{1}\end{array}\right)$

A. Write an equation in slope-intercept form for the line that contains the point $(5,4)$ and has a slope of 2 .

$$
\begin{aligned}
& y \quad 4=2\left(\begin{array}{ll}
x & 5
\end{array}\right) \quad \begin{array}{rl}
y & 4
\end{array}=2 x \quad 10 \\
&+4 \frac{+4}{y}
\end{aligned}
$$

B. Write an equation in slope-intercept form for the line that contains the point $(1,-6)$ and has a slope of -3 .

$$
\begin{aligned}
y(6)=3\left(\begin{array}{ll}
x & 1
\end{array}\right) \quad y+6 & =-3 x+3 \\
\frac{6}{y} & =-3 x-3
\end{aligned}
$$

C. Write an equation in slope-intercept form for the line that contains the point $(-4,4)$ and has a slope of $1 / 2$.

$$
\begin{array}{rlrl}
y \quad 4 & =\frac{1}{2}\left(\begin{array}{ll}
x & (4)
\end{array}\right) & y \quad 4 & =\frac{1}{2} x+2 \\
y & 4 & =\frac{1}{2}(x+4) & \underline{+4} \\
y & =\frac{1}{2} x+6
\end{array}
$$

D. Write an equation in slope-intercept form for the line that contains the points $(2,4)$ and $(-2,6)$.

Find the Slope:
Point-Slope
Slope-Intercept Form:

$$
m=\frac{64}{22}=\frac{2}{4}=\frac{1}{2} \quad \begin{aligned}
y \quad 4 & =\frac{1}{2}\left(\begin{array}{ll}
x & 2
\end{array}\right) \\
y \quad 4 & =\frac{1}{2} x+1 \\
+4 & \underline{+4} \\
y & =\frac{1}{2} x+5
\end{aligned}
$$

E. Write an equation in slope-intercept form for the line that contains the points $(-3,-2)$ and $(-4,1)$.

Find the Slope:
$m=\frac{1(2)}{4(3)}=\frac{3}{1}=3$

Point-Slope Slope-Intercept Form:

$$
\begin{aligned}
y \quad(2) & =3(x \quad(3)) \\
y+2 & =3(x+3) \\
y+2 & =3 x \quad 9 \\
\frac{2}{y} & =3 x \quad \frac{2}{11}
\end{aligned}
$$

F. Write an equation in slope-intercept form for the line that contains the points $(2,-4)$ and $(0,6)$.

Find the Slope:
$m=\frac{6(4)}{02}=\frac{10}{2}=5$

Point-Slope Slope-Intercept Form:

$$
\begin{aligned}
& y \quad 6=5(x \quad 0) \\
& y \quad 6=5 x \\
& \underline{+6} y=5 x+6
\end{aligned}
$$

