

Using a Ski Jump to Illustrate Slope

Chapter 4 Introduction Slope and Graphing Review

V. Write an Equation in Slope-Intercept Form Using the Graph

• Find the *y*-intercept.

y-intercept (b) = 4

• Calculate the slope using
$$\frac{rise}{run}$$
.
 $\frac{-4}{4} = -1$
slope (m) = $\frac{rise}{run} = -1$

• Use the slope-intercept form to write the equation: y = mx + b.

$$y = -1x + 4$$
 or $y = -x + 4$

If there are NO points on the line:

• Where does the line cross the *y*-axis? This is the *y*-intercept.

y-intercept (b) = -3

• Where does the line intersect the corner of a square?

• Use $\frac{rise}{run}$ to calculate the slope. $\frac{3}{1000}$ slope (m) = 4

 Use the slope-intercept form to write the equation: y = mx + b.

$$y = \frac{3}{4}x - 3$$

VI. Horizontal and Vertical Lines HOY VUX

Horizontal line \longleftrightarrow 0 slope y = # Vertical line Undefined slope x = #

VII. Graph the Lines

 $y = -4 \neg HOY$ $x = 2 \neg VUX$

VIII. Convert Point-Slope to Slope-Intercept Form

$$y - y_1 = m(x - x_1)$$

A. Write an equation in slope-intercept form for the line that contains the point (5, 4) and has a slope of 2.

$$y - 4 = 2(x - 5) \qquad y - 4 = 2x - 10 \\ \underline{+4} \qquad \underline{+4} \\ y = 2x - 6$$

B. Write an equation in slope-intercept form for the line that contains the point (1, -6) and has a slope of -3.

$$y - (-6) = -3(x - 1)$$

 $y + 6 = -3x + 3$
 -6
 $y = -3x - 3$

C. Write an equation in slope-intercept form for the line that contains the point (-4, 4) and has a slope of $\frac{1}{2}$.

$$y - 4 = \frac{1}{2}(x - (-4))$$

$$y - 4 = \frac{1}{2}(x + 4)$$

$$y - 4 = \frac{1}{2}(x + 4)$$

$$y - 4 = \frac{1}{2}x + 2$$

$$\frac{+4}{2} = \frac{+4}{2}$$

$$y = \frac{1}{2}x + 6$$

D. Write an equation in slope-intercept form for the line that contains the points (2, 4) and (-2, 6).

Find the Slope: $m = \frac{6-4}{-2-2} = \frac{2}{-4} = -\frac{1}{2}$ Point-Slope \triangleright Slope-Intercept Form: $y - 4 = -\frac{1}{2}(x - 2)$ $y - 4 = -\frac{1}{2}x + 1$ $\frac{+4}{y} = -\frac{1}{2}x + 5$

E. Write an equation in slope-intercept form for the line that contains the points (-3, -2) and (-4, 1). Find the Slope: $m = \frac{1 - (-2)}{-4 - (-3)} = \frac{3}{-1} = -3$ Point-Slope \triangleright Slope-Intercept Form: y - (-2) = -3(x - (-3)) y + 2 = -3(x + 3) y + 2 = -3x - 9 -2

$$\frac{-2}{y} = -3x - 1$$

F. Write an equation in slope-intercept form for the line that contains the points (2, -4) and (0, 6).

Find the Slope: $m = \frac{6 - (-4)}{0 - 2} = \frac{10}{-2} = -5$

Point-Slope \triangleright Slope-Intercept Form: y - 6 = -5(x - 0) y - 6 = -5x $\frac{+6}{y} = -5x + 6$