

Using a Ski Jump to Illustrate Slope

Chapter 4 Introduction Slope and Graphing Review

I. Find the Slope on a Graph

- Start with the point on the far left.
- Go UP 4 units.
- Go RIGHT 3 units.

$$
\begin{aligned}
\frac{\text { rise } \downarrow}{\text { run } \leftrightarrow} & =\frac{4}{3} \\
m & =\frac{4}{3}
\end{aligned}
$$

- What happens if you start with the point on the far right?

$$
m=\frac{4}{3}=\frac{4}{3}
$$

I. Find the Slope on a Graph

- Start with the point on the far left.
- Go DOWN 4 units.
- Go RIGHT 4 units.

$m=1$
II. Find the Slope Using Two Points
$m=\frac{y_{2}}{y_{2}} \begin{aligned} & x_{1} \\ & x_{2}\end{aligned}$ for $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
A. $(2,3)$ and $(4,6)$
B. $(2,3)$ and $(4,6)$

$$
\begin{array}{rlrl}
\frac{63}{42} & =\frac{9}{2} & \frac{6(3)}{4(2)} & =\frac{6+3}{4+2} \\
m & =-\frac{9}{2} & \frac{3}{2} & =\frac{3}{2} \\
m & =\frac{3}{2}
\end{array}
$$

III. Find the Slope Using a Table

$\#$ of Days	Charge
x-values	y-values
1	$\$ 10.00$
2	$\$ 20.00$
5	$\$ 50.00$

- Pick ANY 2 rows.
- Write each row as an ordered pair (x, y).
$(1,10) \&(5,50)$
- Use the slope formula to find the RATE OF CHANGE.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \frac{50-10}{5-1}=10
\end{aligned}
$$

Rate of Change $=\$ 10 / d a y$

IV. Write and Graph an Equation in Slope-Intercept Form

A. $\frac{1}{2} x+y=2$

$$
\begin{aligned}
& y=-\frac{1}{2} x+2 \\
& m=\underline{\frac{1}{2}} \quad b=\underline{2}
\end{aligned}
$$

- Graph the y-intercept.
- Use the slope to plot 2 other points.
- Draw a line to connect the points.

IV. Write and Graph an Equation in Slope-Intercept Form

B. $2 y=2(4 \quad 3 x)$

$$
2 y=8 \quad 6 x
$$

$$
y=-4+3 x \text { or } y=3 x-4
$$

$$
\mathrm{m}=3 \text { or } \frac{3}{1} \quad \mathrm{~b}=4
$$

- Graph the y-intercept.
- Use the slope to plot 2 other points.
- Draw a line to connect the points.
C. $2 y \quad 6=3 x$

$$
\begin{aligned}
2 y & =3 x+6 \\
y & =\frac{3}{2} x+3
\end{aligned}
$$

$$
m=\underline{\frac{3}{2}} \quad b=3
$$

D. $4 x+3 y=2 x \quad 1$

$$
\begin{aligned}
3 y & =-2 x-1 \\
y & =-\frac{2}{3} x-\frac{1}{3}
\end{aligned}
$$

$$
\mathrm{m}=\underline{\frac{2}{3}} \quad \mathrm{~b}=\underline{\frac{1}{3}}
$$

