Chapter 2 Introduction

Practice with Evaluating and Solving Equations/Functions

Function Notation

- Function notation is a way of representing functions algebraically.
- It helps us identify the independent and dependent quantities.
- The function f(x) is read as "f of x".
 - x = independent variable
 - f(x) = dependent variable

Rewrite each function using function notation.

1.
$$y = 3x - 8$$

$$f(x) = 3x - 8$$

2.
$$y = 3x^2 + 6x - 1$$

$$f(x) = 3x^2 + 6x - 1$$

3.
$$y = 3^t + 8$$

$$f(t) = 3^t + 8$$

4.
$$y = |s-2|$$

$$f(s) = |s - 2|$$

Evaluate each of the following.

1.
$$2a + 4$$
 when $a = 5$

2. 3w - 2 when w = -8

14

-26

3.
$$f(x) = 4x + 9$$
 when $x = 2$

4. f(x) = 2x - 4 when x = -1

17

-6

Solve each equation.

1.
$$x-4=-9$$

2.
$$\frac{n}{6} = 5$$

3.
$$5c = -15$$

$$x = -5$$

$$n = 30$$

$$c = -3$$

4.
$$6a+2=-4$$

5.
$$\frac{r}{4} + 3 = 9$$

6.
$$3(k+8) = 21$$

$$a = -1$$

$$r = 24$$

$$k = -1$$

Substitute for f(x) and solve for x.

1.
$$f(x) = x - 4$$
 when $f(x) = 10$

1.
$$f(x) = x - 4$$
 when $f(x) = 10$ 2. $f(x) = 2x + 28$ when $f(x) = 328$

$$x = 14$$

$$x = 150$$

3.
$$f(x) = 4x - 10$$
 when $f(x) = 86$

3.
$$f(x) = 4x-10$$
 when $f(x) = 86$ 4. $f(x) = x+4$ when $f(x) = 2x-8$

$$x = 24$$

$$x = 12$$