Identify the independent and dependent quantities in each problem situation. Then, write a function in function notation to represent the problem situation.

1. Nathan is riding his scooter to school and covers a distance of 6 miles every hour.

Independent quantity (IQ) = time (hours) Dependent quantity (DQ) = distance (miles) D(t) = 6t

- 2. Shanise plays on the varsity soccer team. She averages 4 goals per game.
- 3. The basketball booster club sells t-shirts at a varsity basketball game. Each t-shirt costs \$12.

Use each scenario to complete the table of values and calculate the unit rate of change using two rows in the table.

	Independent Quantity	Dependent Quantity
Quantity		
Units		
Expression		
	0.25	
	0.5	
	1	
	1.25	
	1.5	

4. Jada is walking to school at a rate of 2 miles per hour.

 The volleyball boosters sell bags of popcorn during the varsity matches to raise money for new uniforms. Each bag of popcorn costs \$3.

	Independent Quantity	Dependent Quantity
Quantity		
Units		
Expression		
	5	
	10	
	15	
	20	
	25	

Identify the input value, the output value, and the rate of change for each function.

6. Belinda is making greeting cards. She makes 4 cards her hour. The function C(t) = 4t represents the total number of cards Belinda makes as a function of time.

Input value (IV) = *t* Output value (OV) = 4*t* Rate of change (ROC) = 4.

- 7. Owen is riding his bike to his friend's house at a rate of 6 miles per hour. The function D(t) = 6t represents the distance Owen rides as a function of time.
- 8. Rochelle is shopping for earrings. Each pair of earrings costs \$15. The function C(e) = 15e represents the total cost of the earrings as a function of the number of pairs of earrings Rochelle buys.

Solve each function for the given input value. Then, write your answer in a complete sentence. The function A(t) = 7t represents the total amount of money in dollars Bobby earns mowing lawns as a function of time in hours.

9. A(3) = <u>21</u>
A(3) = 7(3)
Bobby earns \$21 when he mows lawns for 3 hours.

10. *A*(2) = _____

11. A(5) = _____

12. A(4.5) = _____

Use the graph to determine the input value for each given output value. The function D(t) = 40t represents the total distance traveled in miles as a function of time in hours.

13. D(t) = 120

t = 3

14. D(t) = 320

15. D(t) = 240

16. D(t) = 160

17. D(t) = 80

18. D(t) = 400