## Algebra 1: 1<sup>st</sup> Semester Exam Review (2017) Name \_\_\_\_\_ Period \_ COMPLETE EVERY PROBLEM & SHOW ALL WORK FOR 5% BONUS! Period \_

- 1. Hector knows there is a relationship between the **number of cars** he washes and the **time** it takes to wash those cars. Identify the independent quantity and the dependent quantity in the problem situation.
- 2. David rode his bike to the park. He stopped to watch the other children play for a few minutes, then continued his ride to the grocery store. The graph shows this relationship. What is the independent quantity and dependent quantity?



3. Determine whether each graph represents a function. Explain your reasoning.



4. Which graph does **<u>NOT</u>** represent a function?



5. Determine whether each graph is discrete or continuous.



6. Determine if there is a positive, negative, or no correlation for each graph.



- 7. Classify each function as increasing, decreasing, or constant.
  - a.  $f(x) = \frac{1}{2}x 2$  b.  $f(x) = -2^x$  c. f(x) = -3x + 6 d. f(x) = 5
- 8. The attendance for the freshmen football games at Hoover High School can be represented by the linear equation:

y = 73x + 1963x = the number of games played y = the number of people attending the games

- a. Predict the attendance for game 9.
- b. At which game will the attendance be **about** 3000?
- 9. An elevator in a high-rise building moves upward at a constant rate. The table shows the height of the elevator above the ground floor after various times.

| a. | What are the <b>dependent</b> and <b>independent quantities</b> in this problem situation? Explain your reasoning. |            | Time    | Height |
|----|--------------------------------------------------------------------------------------------------------------------|------------|---------|--------|
|    |                                                                                                                    | Units      | Seconds | Feet   |
| b. | Determine the unit rate of change for the problem situation.                                                       |            | 0       | 0      |
|    |                                                                                                                    |            | 1       | 12     |
|    |                                                                                                                    |            | 2       | 24     |
| c. | Complete the table.                                                                                                |            | 3       |        |
| d. | Write an expression that represents the height for at time $t$ seconds in the last row of the table.               |            | 4.5     |        |
|    |                                                                                                                    |            | 5       |        |
| e. | Use function notation to determine the height of the elevator at 14 seconds.                                       | Expression | t       |        |
|    |                                                                                                                    |            |         |        |

*f*(14) = \_\_\_\_\_

- 10. Suppose an elevator starts at the top floor of a high-rise building at a height of 350 feet above the ground floor and *descends* without stopping at a constant rate of 25 feet per second.
  - a. Write a linear function that describes the height, h, of the elevator after t seconds.

*h*(*t*) = \_\_\_\_\_

- b. Graph the function you wrote in part *a*. Label your axes.
- c. Use the graph to estimate when the elevator will be at a height of 200 feet.
- d. Determine the exact time when the elevator will be at a height of 200 feet. Hint: h(t) = 200.
- 11. Taylor received a \$450 gift card from his grandparents and is using it to pay for his singing lessons, which cost \$50 per month.
  - a. Write a linear function that describes the dollar amount, *d*, on the card after *t* months.
    - *d*(*t*) = \_\_\_\_\_
  - b. Graph the function that you wrote in part *a*. Label your axes.
  - c. Use the graph to estimate when there will be \$100 remaining on the card.
  - d. Determine the exact time when there will be \$100 remaining on the card. Hint: d(t) = 100.



- a. Write an equation to represent this problem situation.
  - s = the number of sweaters p = the number of pants

= 200

- b. If Joy buys 3 sweaters, what is the greatest number of pants she can buy?
- c. If Joy buys **no** pants, what is the greatest number of sweaters she can buy?





- 13. Josh has \$125 to spend at the electronics store and decides to buy video games and DVDs with his money. Video games cost \$40 each and DVDs cost \$15 each.
  - a. Write an equation to represent this problem situation. v = number of video games
    - d = number of DVDs

\_\_\_\_\_ = 125

- b. If Josh buys 2 video games, what is the greatest number of DVDs he can buy?
- c. If Josh buys **no** DVDs, what is the maximum number of video games he can buy?



14. Write an equation and sketch the graph for each set of given characteristics.

- 15. Match the function with its appropriate function name.
  - Absolute value function: \_\_\_\_\_ Constant function: \_\_\_\_\_ Exponential function: \_\_\_\_\_ Linear function: \_\_\_\_\_

a. 
$$f(x) = \frac{3}{4}x - 7$$
 b.  $f(x) = -6$  c.  $f(x) = -4^x$  d.  $f(x) = |x - 9|$ 

- 16. Evaluate the function f(x) = 31.572x 17.741 for each of these values.
  - a. f(6.2) b. f(-27.5)

- 17. Solve each of the equations.
  - a. 5(x+4)-8=x+32
- 18. Find the slope using the graph.  $m = \frac{rise}{run}$



Graph each equation.



- b. -3(x 6) 5 = 175
- 19. Find the slope using two points.  $m = \frac{y_2 y_1}{x_2 x_1}$ (-2, 6) and (6, 8)

Write the slope-intercept form of each equation given a point and slope or two points. Use point-slope form:  $y - y_1 = m(x - x_1)$  first. Then, rewrite the equation in slope-intercept form: y=mx + b.

24. 
$$(4,-6), m=2$$
  
25.  $(-9,6), m=\frac{1}{3}$ 

Find the slope first!  $m = \frac{y_2 - y_1}{x_2 - x_1}$ 26. (2, -5) and (7, 0) 27. (4, -3) and (6, -7)

Solve each literal equation.

28. Solve 
$$C = 2\pi r$$
 for *r*.  
29. Solve  $A = \frac{1}{2}(b_1 + b_2)h$  for *h*.

30. Solve 
$$A = 2(L + W)$$
 for *L*. 31. Solve  $K = xr^2$  for *r*.

Write each equation in standard form. Ax + By = C

32. 
$$y = -\frac{1}{4}x + 3$$
 33.  $y = 2x - 7$ 

Write each equation in slope-intercept form. y = mx + b

$$34. \ 5x + 2y = -6 \qquad \qquad 35. \ 2x + 3y = 9$$

36. What is the *y*-intercept for the equation 7x + 2y = -14?

- 37. What is the *x*-intercept for the equation -3x 5y = -15?
- 38. Rewrite each function using the Distributive Property.
  - a. d(x) = 6(x+4) =\_\_\_\_\_

b. d(x) = 2(5x + 3.5) =\_\_\_\_\_

39. Write a compound inequality that represents a number that is less than 24 or greater than 35. Then, graph the compound inequality on the number line.

<+ + + + + + + + + + + + **→** 

- 40. Solve each inequality and graph the solution on the number line.
  - a.  $4(x+1) \le 12$   $\longleftrightarrow$  b. -3(x-3) < 12  $\longleftrightarrow$   $\Rightarrow$ c.  $90 \le 15m \le 135$   $\Leftarrow$  d.  $65 \le -13x < 104$   $\Leftarrow$
- 41. Solve and graph each compound inequality on the number line.

a.  $-6 \le 2x + 2 \le 10$   $\longleftrightarrow$  b.  $x + 2 \le -4$  or -2x < -8  $\Leftarrow$ 

c.  $4x - 4 < -24 \text{ or } 4x + 6 > 14 \quad \longleftarrow$ 

7

- 42. Joey has \$50 and earns \$12.50 per day. He wants to save <u>at least</u> \$250.00. Write an inequality that represents this scenario. Do Not Solve!
- 43. Evaluate each absolute value expression.

a. 
$$|4-12|$$
 b.  $|-8(7)|$ 

 c.  $|-13| - |6 - 10|$ 
 d.  $\left|\frac{-15+13}{5}\right|$  \*Write your answer as a fraction!

44. Solve each absolute value equation. Remember, get the absolute value sign by itself (as if it were a variable). Then, set what is inside the absolute value sign equal to the positive and negative values of the number on the other side of the equals sign.

a. 
$$|2x-5| = 7$$
 b.  $|-2x+7| = 11$ 

c. 
$$|x-6|+8=41$$
  
d.  $52=7|x-2|-4$ 

45. Consider the sequence shown.

- a. Describe the pattern.
- b. Draw the next two figures of the pattern.
- c. Write a numeric sequence to represent the first 5 figures.

\_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_

46. Consider the sequence shown.

- a. Describe the pattern.
- b. Draw the next two figures of the pattern.

\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_,

c. Write a numeric sequence to represent the first 5 figures.





- 47. JoJo's Pizza Shop made 16 pizzas on Monday, 22 pizzas on Tuesday, and 28 pizzas on Wednesday. If this pattern continues, how many pizzas will JoJo's Pizza Shop make on Friday?
- 48. Bradley sends two text messages to his friends to tell them school is cancelled because of snow. **Each** of those friends send two text messages to tell their friends the same news. **Each** of those friends send two text messages to tell their friends the same news, and so on.
  - a. Write a numeric sequence to represent the number of calls made in each of the first 5 sets of phone calls.
    - 1, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_, \_\_\_\_\_,
  - b. Is this an arithmetic or geometric sequence?
- 49. The Robinsons are draining their family swimming pool. After  $\frac{1}{2}$  hour, there are 7500 gallons of water in the pool. After 1 hour, there are 7200 gallons of water in the pool. After  $1\frac{1}{2}$  hours, there are 6900 gallons of water in the pool. If this pattern continues, how much water will be in the pool after 3 hours?

- 50. Identify each sequence as **arithmetic** or **geometric**. Then, determine the **common difference** or **common ratio** for each sequence.
  - a. 2, 5, 8, 11, 14, 17b. -6, 12, -24, 48, -96c.  $1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}$ d. 0.13, 0.38, 0.63, 0.88, 1.13e. -6, -8, -10, -12, -14f. 200, 20, 2, 0.2, 0.02g.  $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$ h. 8, -1, -10, -19, -28

51. For each sequence, determine whether it is **arithmetic** or **geometric**. Then, use the appropriate formula to determine the <u>15th term</u> in the sequence.

$$a_n = a_1 + d(n-1) \qquad \qquad g_n = g_1 \cdot r^{n-1}$$
  
a. 5, 10, 20, 40, 80, 160  
b.  $\frac{1}{2}$ , 1,  $\frac{3}{2}$ , 2,  $\frac{5}{2}$ , 3,  $\frac{7}{2}$ 

c. 
$$-0.25, 0.5, 1.25, 2, 2.75$$
  
d.  $4, 2, 1, \frac{1}{2}, \frac{1}{4}$ 

52. Determine the <u>50th term</u> in the sequence defined by  $a_n = -11 + 5(n-1)$ .

53. Determine the <u>**7th term**</u> in the sequence defined by  $g_n = 2 \cdot \left(\frac{1}{2}\right)^{n-1}$ .

54. Determine the pattern in the sequence: 7, 14, 21, 28, .... Then, write a function to represent the pattern.

Complete the table and graph each exponential function. Identify the *x*-intercept, *y*-intercept, asymptote, domain, and range. Type each expression into the calculator exactly as it is written, replacing *x* with its value.

y

х

-2

-1

0

1

2

- 55.  $f(x) = -4 \cdot 2^x$ 
  - a. x-intercept(s)
  - b. y-intercept
  - c. asymptote
  - d. domain
  - e. range
  - f. Circle one: increasing or decreasing





57. Use the simple and compound interest formulas to complete the table. Round to the nearest **cent**. Simple: A = P + (Pr)t

Compound:  $A = P \cdot (1+r)^t$ 

a. Complete the table given an initial deposit of \$20,000 and an interest rate of 2.5%.

| Time     | Simple<br>Interest<br>Balance | Compound<br>Interest<br>Balance |
|----------|-------------------------------|---------------------------------|
| 6 months |                               |                                 |
| 1 year   |                               |                                 |
| 5 years  |                               |                                 |
| 20 years |                               |                                 |

- b. Would it be worth paying a fee of \$250 to keep your money in the compound interest account for 20 years? Why or why not?
- c. How would you find the rate of change for a simple interest account? Would you use the common difference or the common ratio?
- d. Which account is growing exponentially?
- 58. Carrie plans to deposit \$1,480 into an account that pays compound interest. How much will be in her account given the rate of interest over a specified period of time? Round to the nearest **cent**.  $A = P(1+r)^t$ 
  - a. 1.9% for 10 years

b. 3.6% for 15 years

59. The utility costs for Hoover High School this year were \$74,000. Write a function that represents HHS's utility costs as a function of time in years for each scenario. Choose the correct formula!

 $A = P(1+r)^{t}$  or  $A = P(1-r)^{t}$ 

- a. Costs *increase* at a rate of 2.3% per year b. Costs *decrease* at a rate of 1.7% per year
- 60. Enrollment at the University of Alabama has reached 60,000 and is expected to increase at a rate of 7.5% per year. How many students are expected to be enrolled after 3 years?  $A = P(1+r)^t$
- 61. Approximately, 456 bacteria are living in a Petrie dish. Scientists are testing a new vaccine that is expected to decrease the number of bacteria at a rate of 2% per year. How many bacteria will be left after 6 years?  $A = P(1-r)^{t}$
- 62. Write the equation of each new function g(x) after the translation described.
  - a. f(x) = -10x after a translation 5 units to the right
  - b.  $f(x) = 3^x$  after a translation 4 units up
  - c.  $f(x) = 2x^2$  after a translation 2 units left
  - d.  $f(x) = x^3$  after a translation 2 units up
- 63. Describe each graph in relation to its basic function, i.e. vertical translation up 2 units.
  - a. Compare  $g(x) = (x+3)^2$  to the basic function  $f(x) = x^2$ .
  - b. Compare  $g(x) = b^x + 1$  to the basic function  $f(x) = b^x$ .
  - c. Compare  $g(x) = b^{-x}$  to the basic function  $f(x) = b^{x}$ .
  - d. Compare  $g(x) = x^3 + 9$  to the basic function  $f(x) = x^3$ .
  - e. Compare  $g(x) = b^{(x-1)}$  to the basic function  $f(x) = b^x$ .