\qquad Solving Quadratic Equations by Completing the Square

COMPLETING THE SQUARE	When you don't have a perfect square trinomial, you can create one! This process is called Completing the Square.	
	Example	Steps
	$\begin{aligned} & x^{2}+8 x-20=0 \\ & x^{2}+8 x \end{aligned}$	1. Rewrite as $x^{2}+b x=c$ by moving the given c to the right side of the equation.
	$\left(\overline{{ }_{\square}}\right)^{2}=(\square)^{2}=$	2. Find $\left(\frac{b}{2}\right)^{2}$. This will be the new c value.
	$x^{2}+8 x \quad=20$	3. Add $\left(\frac{b}{2}\right)^{2}$ to both sides of the equation to create a perfect square on the left side of the equation.
		4. Factor the perfect square trinomial. Simplify the right side.
		5. Take the square root of both sides of the equation.
		6. Solve for x using the positive and negative square roots. These are the solutions.
YOU TRY!	Directions: Solve each quadratic equation by completing the square.	
	1. $x^{2}-6 x-16=0$	2. $x^{2}-2 x-5=0$

Answers:

1. $x=8, x=-2$
2. $x=1 \pm \sqrt{6}$
3. $x=8, x=10$
4. $x=-4 \pm \sqrt{5}$
5. $x=-7, x=-1$
6. $x=3 \pm \sqrt{5}$
