\qquad Period \qquad Approximating and Rewriting Radicals

Main Ideas/Questions	Notes/Examples		
WARM UP	Directions: Rewrite each radical by extracting the perfect squares.		
	1. $\sqrt{169}$	2. $\sqrt{\frac{1}{25}}$	3. $\sqrt{-49}$
REWRITING RADICALS with VARIABLES	You can simplify radical expressions that contain variables. - A variable with an even $(2,4,6 \ldots)$ exponent is a perfect square. - A variable with an odd (1,3,5...) exponent is the product of a perfect square and a variable.		
EXAMPLES	Directions: Simplify each radical expression.		
	1. $\sqrt{45 a}$	2. $\sqrt{27 n^{3}}$	3. $\sqrt{\frac{25}{b^{2}}}$
SOLVING RADICAL EQUATIONS	Sometimes, you can solve a quadratic equation by taking the square root of each side.		
EXAMPLES	Directions: Solve each quadratic equation by taking the square root of each side.		
	1. $x^{2}=40$	2. $x^{2}=75$	3. $x^{2}-4=23$
	4. $(x-1)^{2}=17$		5. $(x+8)^{2}=81$

