$\qquad$
$\qquad$ Approximating and Rewriting Radicals

| Main Ideas/Questions | Notes/Examples |  |
| :---: | :---: | :---: |
| W ARM UP | Directions: Simplify. |  |
|  | 1. $(8)^{2}=$ $\qquad$ <br> 2. $(-8)^{2}=$ $\qquad$ |  |
| VOCABULARY See page 763. | A radical expression involves a radical symbol. <br> A number $b$ is the square root of $a$ if $b^{2}=a$. <br> The square root of 64 is 8 if $8^{2}=64$. In other words, $\sqrt{64}=8$. <br> If $(-8)^{2}=64$, then is -8 also the square root of 64 ? $\qquad$ <br> Why or why not? $\qquad$ $\qquad$ <br> There are 2 square roots for every whole number, a positive square root called the $\qquad$ and a negative square root. |  |
| EXAMPLES | Finding the Square Root of Perfect Squares <br> Directions: Solve each equation by extracting the square root. |  |
|  | 1. $\sqrt{16}= \pm 4$ | 2. $\sqrt{25}=$ |
|  | 3. $\sqrt{36}=$ | 4. $\sqrt{0}=$ |
|  | These are all perfect squares! |  |
| Rewriting Radicals | Rewriting Radicals by Extracting Perfect Squares <br> - Simplify a radical to find an exact answer. Accuracy is important! <br> - Try to factor out the perfect square(s). |  |
| EXAMPLES | Directions: Rewrite each radical by extracting the perfect squares. |  |
|  | 1. $\sqrt{20}$ <br> $\sqrt{4} \cdot \sqrt{5} \quad 4$ is a perfect square! $2 \sqrt{5}$ | 2. $\sqrt{45}$ |



