\qquad

Main Ideas/Questions	Notes/Examples			
W ARM UP	Directions: Simplify the following polynomials.			
Do you see a pattern?	- $(k-11)(k-11)=k^{2}-11 k-11 k+121=k^{2}-22 k+121$ - $(3 d+7)(3 d+7)=9 d^{2}+21 d+21 d+49=9 d^{2}+42 d+49$			
Steps to Factor a Perfect Square Trinomial	1.	Make sure you have a perfect square trinomial! You can take the square root of the first and last terms. The middle term is twice the product of the square root of the first and last terms.		
The $1^{\text {st }}$ and last terms are perfect squares.	Use the following rules to factor: 2. $\begin{aligned} & a^{2}+2 a b+b^{2}=(a+b)(a+b)=(a+b)^{2} \\ & a^{2}-2 a b+b^{2}=(a-b)(a-b)=(a-b)^{2} \end{aligned}$			
	3. Check your work by distributing!			
EXAMPLES	Directions: Factor each perfect square trinomial. Check your work by distributing. If a polynomial cannot be factored, write "prime".			
	$\begin{aligned} & \text { 1. } x^{2}+10 x+25 \\ & (x+5)^{2} \end{aligned}$		$\text { 2. } \begin{aligned} & s^{2}-8 s+16 \\ & (s-4)^{2} \end{aligned}$	
	3. $p^{2}+8 p+64$ prime		4. $\begin{aligned} & n^{2}-16 n+64 \\ & (n-8)^{2}\end{aligned}$	
	$\begin{aligned} & \text { 5. } m^{2}+24 m+144 \\ & (m+12)^{2} \end{aligned}$		6. $\begin{aligned} & 169-26 r+r^{2} \\ & (13-r)^{2}\end{aligned}$	
	$\text { 7. } \begin{aligned} & 9 g^{2}+12 g+4 \\ & (3 g+2)^{2} \end{aligned}$		8. $7 x^{2}-9 x+2$ prime	
	$\text { 9. } \begin{aligned} & 16 t^{2}+48 t+36 \\ & (4 t+6)^{2} \end{aligned}$		$\begin{aligned} & \text { 10. } 4 z^{2}-36 z+81 \\ & (2 z-9)^{2} \end{aligned}$	
	$\begin{aligned} & \text { 11. } 2 u^{2}+12 u+18 \\ & 2(u+3)^{2} \end{aligned}$		$\begin{aligned} & \text { 12. } 16 d^{2}-40 d e+25 e^{2} \\ & (4 d-5 e)^{2} \end{aligned}$	

