\qquad
\qquad

Warm Up - Turn and Talk

Turn and talk to your neighbor. Describe what it means to factor a polynomial. Your explanation should include terms like polynomial, factor, and multiply. Be prepared to discuss your thoughts with the class.

Notes

Recall, the Zero Product Property states if the product of 2 or more factors $=0$, then at least 1 of the factors $=0$.

$$
\text { If } a b=0 \text {, then } a=0 \text { or } b=0 .
$$

"I Do"

Factor the polynomial $x^{2}-4 x-5=0$. Then, use the Zero Product Property to determine the solutions or x intercepts.

$$
\begin{array}{ll}
x^{2}-4 x-5=0 & \text { Factor the quadratic equation. } \\
(x-5)(x+1)=0 & \text { Set each binomial factor }=0 . \\
x-5=0 & x+1=0 \\
x=5 & x=-1
\end{array} \quad \text { Solve for the variable }(x) .
$$

The x-intercepts are $(5,0)$ and $(-1,0)$.

Graph the solutions to the quadratic equation $y=x^{2}-4 x-5$ on the coordinate plane. Find the x intercept(s), axis of symmetry, and vertex.
x-intercept(s): $(5,0) \&(-1,0)$
axis of symmetry: $x=\frac{-1+5}{2}=\frac{4}{2}=2$
Find the point halfway between the x-intercepts.
vertex: (2, -9)
Let $x=2$ and solve for y.
$y=2^{2}-4(2)-5$
$y=4-8-5$
$y=-9$

The x-intercepts are the solutions to the quadratic equation.
They are also called the zeros or roots because you set the quadratic equation $=0$ and solve for x.
On the coordinate plane, the x-intercepts are where the parabola crosses the x-axis.

"We Do"

Factor each polynomial to determine the solution(s) or x-intercept(s), if possible. Then, graph the solution(s).

1. $x^{2}+8 x=-7$
$x^{2}+8 x+7=-7+7$
$x^{2}+8 x+7=0 \quad$ Set the equation equal to 0.
$(x+1)(x+7)=0$
$x+1=0$ or $x+7=0$
$x=-1 \quad x=-7$
Factor.
Set each binomial factor $=0$.
Solve for x.
x-intercept(s): $(-1,0) \&(-7,0)$
axis of symmetry: $x=\frac{-1+(-7)}{2}=\frac{-8}{2}=-4$
vertex: $(-4,-9)$
$(-4)^{2}+8(-4)+7$
16-32+7
-9

2. $x^{2}-5 x=13 x-81$
$x^{2}-5 x-13 x=13 x-13 x-81$
$x^{2}-18 x=-81$
$x^{2}-18 x+81=-81+81$
$x^{2}-18 x+81=0$
$(x-9)(x-9)=0$
$x-9=0$ or $x-9=0$
$x=9 \quad x=9$
x-intercept(s): $(9,0)$
axis of symmetry: $x=9$
vertex: $(9,0)$
$9^{2}-18(9)+81$
$81-162+81$
0

3. $x^{2}-11 x+12$

No real solution.

x-intercept(s):

axis of symmetry: $x=$
vertex:
4. $2 x^{2}+4 x$
$2 x^{2}+4 x=0$

Factor out the GCF!

$2 x(x+2)=0$
$2 x=0$ or $x+2=0$
$x=0 \quad x=-2$
x-intercept(s): $(0,0) \&(-2,0)$
axis of symmetry: $x=\frac{0+(-2)}{2}=\frac{-2}{2}=-1$
vertex: $(-1,-2)$
$2(-1)^{2}+4(-1)$
2-4
-2

