\qquad
\qquad Factoring Polynomials

Factor Out the (GCF) Greatest Common Factor

Steps:

1) Find the GCF, if possible
a. Find the greatest integer that all the terms have in common.
b. Do all terms have a variable? If so, find the variable with the smallest exponent.
2) Divide each term by the GCF. Don't forget the quotient rule for exponents!
3) Rewrite the polynomial as a product of the GCF and the remaining terms.

Quotient Rule

$$
\frac{x^{a}}{x^{b}}=x^{a-b}
$$

Factor out the GCF, if possible.

1. $4 x+12$
2. $3 x^{2}-9 x-3$
3. $2 x-11$
4. $x^{3}-5 x$
5. $5 x^{2}-10 x+5$
6. $-7 x^{3}-14 x^{2}$
$\underline{\text { Factor Trinomials of the Form }} \underline{x^{2}+b x+c}$
Steps:
1) List the factor pairs of $a \cdot c$.
2) Find the factor pair whose sum equals \boldsymbol{b}.
3) Rewrite the trinomial as the product of two binomials, $\left(x+1^{\text {st }}\right.$ factor $)\left(x+2^{\text {nd }}\right.$ factor $)$.

Factor each polynomial.

1. $x^{2}+7 x+6$
2. $x^{2}+5 x+4$
3. $x^{2}-6 x+9$
4. $x^{2}+5 x-6$
5. $x^{2}+10 x+16$
6. $x^{2}-3 x-18$
