Algebra 1: 12.2 Notes \& Practice \qquad Multiplying Polynomials - Area Models

When you multiply polynomials in \qquad form, the product is a polynomial in
\qquad form.

Method 1: FOIL

Distribute, Distribute, Distribute!
\times Multiply the coefficients

+ Add the exponents of powers with the same base

Combine Like Terms!

Let's Practice

1. $-5 x(6 x+1)$
2. $(6 s+4)(-2 s-5)$
3. $(-9 r+3)(3 r+4)$
4. $(10 n-6)\left(-4 n^{2}+n-8\right)$
5. Find the area of the rectangle.

Method 2: Area Models

Another way to multiply polynomials is to use an area model.

Example

$(x+1)(x+2)$

\bullet	x	+2
x		
+1		

- Write each term of one polynomial in a separate box in column 1.
- Write each term of the other polynomial in a separate box in row 1.
- Multiply each term in the $1^{\text {st }}$ row by each term in the $1^{\text {st }}$ column and write each product in the other boxes.
- Combine like terms.

Let's Practice

6. $3 x(4 x+1)$

\bullet	$4 x$	+1
$3 x$		

7. $(x-4)(2 x+3)$

\bullet	$2 x$	+3
x		
-4		

8. $5 x^{3}\left(4 x^{2}+3 x+7\right)$

\bullet	$4 x^{2}$	$+3 x$	7
$5 x^{3}$			

9. $(x+5)\left(2 x^{2}-3 x-4\right)$

\bullet	$2 x^{2}$	$-3 x$	-4
x			
+5			

