Algebra 1: 12.1 Notes Name
Vocabulary \& Classifying Polynomials \qquad
\qquad Vocabulary \& Classifying Polynomials

Let's Review - Vocabulary (Take out your homework.)
What is a polynomial?

Examples:

Always write polynomials in standard form, meaning alphabetical order from highest to lowest exponent!
Brainteaser: Are the following polynomials?

$$
\begin{aligned}
& 3 x y^{-2} \\
& \frac{1}{x} \\
& \sqrt{x}
\end{aligned}
$$

What is a term?

What is a coefficient?

Working with a partner, complete the table for the given polynomial: $m^{3}+8 m^{2}-10 m+5$.

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$
Term	$+m^{3}$			
Coefficient	+1			
Power	m^{3}			
Exponent	3			

The exponent of a term in a polynomial is also called the \qquad
The degree of $8 m^{2}$ is \qquad .

Classifying Polynomials

Polynomials are classified based on the number of terms.
1 term is a \qquad
2 terms is a \qquad
3 terms is a \qquad
Examples: $\quad-6 x^{2}+4 x$

$$
\begin{equation*}
\frac{2}{3} x^{4} \tag{8}
\end{equation*}
$$

$$
0.5 x^{3}+7.4 x^{2}+3.2
$$

Polynomials are also classified based on the term with the greatest exponent or degree.
Examples: $\quad-6 x^{2}+4 x$
$5 x^{3}+\frac{2}{3} x^{4}$
$3.2+7.4 x^{2}+0.5 x^{3}$ 8

Degree: \qquad Degree: \qquad Degree: \qquad

- Degree: Degree.

Degree: \qquad

Let's Practice

Write each polynomial in standard form. Determine if it is a monomial, binomial, or trinomial. State the degree of the polynomial.

1. $12.5 t^{3}$

Standard Form: \qquad
\# of Terms: \qquad
Degree: \qquad
3. $-12+32 j^{3}$

Standard Form: \qquad
\# of Terms: \qquad
Degree: \qquad
2. $h-10+h^{2}$

Standard Form: \qquad
\# of Terms: \qquad
Degree: \qquad
4. $7-3 n^{2}+n^{4}$

Standard Form: \qquad
\# of Terms: \qquad
Degree: \qquad

How do you know when an expression is a polynomial?

