"Like" terms have the <u>same variable</u> raised to the <u>same power</u>.

Examples: $2x^3$ and	$d 6x^3$ Non Ex	<i>camples</i> : $2x^3$ and	$4y^3$ $3x^2$ and $7x$
-----------------------------	-----------------	-----------------------------	------------------------

Adding Polynomials - Let's Look at Two Examples!

Adding polynomials *horizontally* means...

- 1. Rewrite each polynomial by removing the parenthesis, "()".
- 2. Identify the "like" terms.
- 3. Group "like" terms together, ordering the terms from highest to lowest exponent.
 - Count your terms. Make sure you don't lose one!
- 4. Combine "like" terms by adding the coefficients and constants.

 $(11x - x^2 + 13) + (2x^2 - 23 - 5x)$

Adding polynomials *vertically* means...

- 1. *Line up each polynomial vertically.*
 - *a.* Rewrite the 1st polynomial by removing the parenthesis, "()", and ordering the terms from highest to lowest exponent.
 - *b.* Remove the parenthesis from the 2nd polynomial and line up the "like" terms below the 1st polynomial.
- 2. Fill in the blank spots (where there are no terms) with zeros. Zero just acts as a placeholder.
- 3. Combine "like" terms by adding the coefficients and constants.

 $(4x^2+6x+7)+(2x^2-9x+1)$

Subtracting Polynomials - Let's Look at Two Examples!

Subtracting polynomials *horizontally* means...

- 1. Rewrite the 1^{st} polynomial by removing the parenthesis, "().
- 2. Distribute the negative, "-", to each term in the 2nd polynomial, meaning multiply each term in the 2nd polynomial by -1, and remove the parenthesis.
- 3. Identify the "like" terms.
- 4. Group "like" terms together, ordering the terms from highest to lowest exponent.
 - Count your terms. Make sure you don't lose one!
- 5. Combine "like" terms by adding the coefficients and constants.

 $(4x^2 + 5x) - (7x + 3x^2 + 1)$

Subtracting polynomials *vertically* means...

- 1. Distribute the negative, "-", to each term in the 2nd polynomial, meaning multiply each term in the 2nd polynomial by -1, and remove the parenthesis.
- 2. *Line up each polynomial vertically.*
 - *a.* Rewrite the 1st polynomial by removing the parenthesis, "()", and ordering the terms from highest to lowest exponent.
 - b. Line up the "like" terms in the 2^{nd} polynomial below the 1^{st} polynomial.
- 3. Fill in the blank spots (where there are no terms) with zeros. Zero is just a placeholder.
- 4. Combine "like" terms by adding the coefficients and constants.

 $(2x^3+5x^2-3x)-(x^3-8x^2+11)$

Find the sum or difference.

1. $(x+5)+(4x-7)$	2. $(k^2 - 4k + 7) + (k^2 + 9k - 3)$
3. $(w^3 - 2w^2 - 5) + (3w^2 - 11)$	4. $(9x-5y)+(3x+2y-7)$
5. $(8-p^2+5p)+(p^2-15-4p)$	6. $(6a^2 - 5a) + (a - 5a + 3a^3)$
7. $(x^2 + 17x) - (3x^2 + 5x)$	8. $(5r-2s)-(9r-11s)$
9. $(4c-11)-(4c+11)$	10. $(3m^2 + 7m - 1) - (m^2 + 2m - 5)$
11. $(7v - v^2 + 14) - (15 + 8v + v^2)$	12. $(8x - 3y) - (2y - 13 + 5x)$
13. Find the <u>sum</u> of $(8p^2 - 2p + 15)$ and $(11 - 2p)$	$(2^{2}-1)$.
14. Subtract $(2w^2 - 5w + 10)$ from $(w^3 + 6w^2 - 2)$.	. Think about it! How would you write "subtract 3 from 6?"