\qquad
\qquad Adding and Subtracting Polynomials

"Like" terms have the same variable raised to the same power.

Examples: $2 x^{3}$ and $6 x^{3} \quad$ Non Examples: $2 x^{3}$ and $4 y^{3} \quad 3 x^{2}$ and $7 x$

Adding Polynomials - Let's Look at Two Examples!
Adding polynomials horizontally means...

1. Rewrite each polynomial by removing the parenthesis, "()".
2. Identify the "like" terms.
3. Group "like" terms together, ordering the terms from highest to lowest exponent.

- Count your terms. Make sure you don't lose one!

4. Combine "like" terms by adding the coefficients and constants.
$\left(11 x-x^{2}+13\right)+\left(2 x^{2}-23-5 x\right)$

Adding polynomials vertically means...

1. Line up each polynomial vertically.
a. Rewrite the $1^{\text {st }}$ polynomial by removing the parenthesis, "()", and ordering the terms from highest to lowest exponent.
b. Remove the parenthesis from the $2^{\text {nd }}$ polynomial and line up the "like" terms below the $1^{\text {st }}$ polynomial.
2. Fill in the blank spots (where there are no terms) with zeros. Zero just acts as a placeholder.
3. Combine "like" terms by adding the coefficients and constants.

$$
\left(4 x^{2}+6 x+7\right)+\left(2 x^{2}-9 x+1\right)
$$

Subtracting Polynomials - Let's Look at Two Examples!
Subtracting polynomials horizontally means..

1. Rewrite the $1^{\text {st }}$ polynomial by removing the parenthesis, "().
2. Distribute the negative, "-", to each term in the $2^{\text {nd }}$ polynomial, meaning multiply each term in the $2^{\text {nd }}$ polynomial by -1 , and remove the parenthesis.
3. Identify the "like" terms.
4. Group "like" terms together, ordering the terms from highest to lowest exponent.

- Count your terms. Make sure you don't lose one!

5. Combine "like" terms by adding the coefficients and constants.
$\left(4 x^{2}+5 x\right)-\left(7 x+3 x^{2}+1\right)$

Subtracting polynomials vertically means...

1. Distribute the negative, "-", to each term in the $2^{\text {nd }}$ polynomial, meaning multiply each term in the $2^{\text {nd }}$ polynomial by -1 , and remove the parenthesis.
2. Line up each polynomial vertically.
a. Rewrite the $1^{\text {st }}$ polynomial by removing the parenthesis, "()", and ordering the terms from highest to lowest exponent.
b. Line up the "like" terms in the $2^{\text {nd }}$ polynomial below the $1^{\text {st }}$ polynomial.
3. Fill in the blank spots (where there are no terms) with zeros. Zero is just a placeholder.
4. Combine "like" terms by adding the coefficients and constants.
$\left(2 x^{3}+5 x^{2}-3 x\right)-\left(x^{3}-8 x^{2}+11\right)$

Find the sum or difference.

1. $(x+5)+(4 x-7)$	2. $\left(k^{2}-4 k+7\right)+\left(k^{2}+9 k-3\right)$
3. $\left(w^{3}-2 w^{2}-5\right)+\left(3 w^{2}-11\right)$	4. $(9 x-5 y)+(3 x+2 y-7)$
5. $\left(8-p^{2}+5 p\right)+\left(p^{2}-15-4 p\right)$	6. $\left(6 a^{2}-5 a\right)+\left(a-5 a+3 a^{3}\right)$
7. $\left(x^{2}+17 x\right)-\left(3 x^{2}+5 x\right)$	8. $(5 r-2 s)-(9 r-11 s)$
9. $(4 c-11)-(4 c+11)$	10. $\left(3 m^{2}+7 m-1\right)-\left(m^{2}+2 m-5\right)$
11. $\left(7 v-v^{2}+14\right)-\left(15+8 v+v^{2}\right)$	12. $(8 x-3 y)-(2 y-13+5 x)$

13. Find the sum of $\left(8 p^{2}-2 p+15\right)$ and $\left(11-2 p^{2}-1\right)$.
14. Subtract $\left(2 w^{2}-5 w+10\right)$ from $\left(w^{3}+6 w^{2}-2\right)$. Think about it! How would you write "subtract 3 from 6 ?"
