Algebra 1: 11.4 Notes \& CW/HW
Name \qquad Period \qquad Factored Form of a Quadratic Function

Let's Review

What is a quadratic function?

Examples:

What are 2 forms of writing a quadratic function?

3rd Form: Writing a Quadratic Function in Factored Form

Solutions for Quadratic Functions

When you graph a quadratic equation, the solutions are the \qquad or the point(s) where the parabola crosses the x-axis.

The x-intercepts also called the \qquad or \qquad .

How many solutions does each parabola have?

\qquad
\qquad
\qquad

A quadratic equation can have \qquad
\qquad or \qquad real solutions.

Solving Quadratic Functions in Factored Form
Use the Zero Product Property:
Think about It! If $4 \cdot b=0$, what is the value of b ? \qquad

Let's Look at an Example! How do we find a solution?
If $(x+4)(x-3)=0$, then $(x+4)=0$ or $(x-3)=0$

Find the solution(s) or x-intercept(s) for each quadratic function written in factored form.

1. $(x+7)(3 x-1)=0$
2. $(4 s+8)(s+9)=0$
3. $j(j-8)=0$
4. $(x-4)(3 x-12)=0$
5. $\frac{1}{2}(x-4)(x+1)=0$
6. $-(x-3)(x-11)=0$

Writing a Quadratic Function in Factored Form

We need to know two things!

1. Does the parabola open up or down?
2. What are the x-intercepts?

Let's Look at an Example! How do we write a quadratic function in factored form?
The parabola opens UP and x-intercepts are $(2,0)$ and $(4,0)$.

$$
f(x)=
$$

\qquad

Write a quadratic equation in factored using the given information.

1. The parabola opens DOWN and the x-intercepts are $(-3,0)$ and $(1,0)$.
2. The parabola opens DOWN and the x-intercepts are $(0,0)$ and $(5,0)$.
3. The parabola opens DOWN and the x-intercepts are $(4,0)$ and $(-2,0)$.
4. The parabola opens UP and the x-intercepts are $(3.5,0)$ and $(-4.3,0)$.
5. The parabola opens UP and the x-intercepts are $\left(-\frac{1}{2}, 0\right)$ and $\left(-\frac{3}{4}, 0\right)$.
6. The parabola opens UP and the x-intercepts are $(1,0)$ and $\left(\frac{2}{3}, 0\right)$.

Finding the Axis of Symmetry

The axis of symmetry is the midpoint between the x-coordinates of the x-intercepts.

How do we find the axis of symmetry given the x-intercepts?

Let's Look at an Example!

Find the axis of symmetry if the x-intercepts are $(-1,0)$ and $(3,0)$?

Determine the axis of symmetry of a parabola with the given x-intercepts.

1. The x-intercepts are $(-12,0)$ and $(4,0)$.
2. The x-intercepts are $(7,0)$ and $(0,0)$.
3. The x-intercepts are $(-8,0)$ and $(-2,0)$.
4. The x-intercepts are $(-3.5,0)$ and $(4.1,0)$.

Finding the Vertex

Follow These Steps!

1. Find the axis of symmetry (AOS). This is the x-coordinate of the vertex!
2. Plug the AOS in for x and solve the quadratic equation. This is y-coordinate of the vertex!

Determine the vertex for a parabola given the quadratic function: $f(x)=(x+2)(x-2)$ and the x-intercepts $(-2,0)$ and $(2,0)$.

1. Find the axis of symmetry:
2. Let $x=0$ and solve for $y($ or $f(x))$:

Determine the vertex of a parabola given the quadratic function and the x-intercepts.

1. The quadratic function is $f(x)=(x+3)(x+1)$ and the x-intercepts are $(-3,0)$ and $(-1,0)$.
2. The quadratic function is $f(x)=(x+5)(x-3)$ and the x-intercepts are $(-5,0)$ and $(3,0)$.
3. The quadratic function is $f(x)=(x-2)(x-12)$ and the x-intercepts are $(2,0)$ and $(12,0)$.

Graphing a Quadratic Function

Putting It All Together!

1. Use the quadratic equation written in factored form to find the x-intercepts.
2. Use the x-intercepts to find the axis of symmetry.
3. Use the axis of symmetry to find the vertex.
4. Graph all 3 points: the x-intercepts and the vertex to form a U-shaped curve called a parabola.

$$
\text { Quadratic Equation } \rightarrow x \text {-intercepts } \rightarrow \text { Axis of Symmetry } \rightarrow \text { Vertex } \rightarrow \text { Parabola }
$$

Let's Look at an Example! How do we graph a quadratic function?

$$
f(x)=(x-4)(x+2)
$$

Identify the x-intercepts and the vertex. Then, graph each of the quadratic functions.

1. $f(x)=(x+1)(x-3)$

2. $f(x)=(x+2)(x+4)$

3. $f(x)=-x(x-4)$

