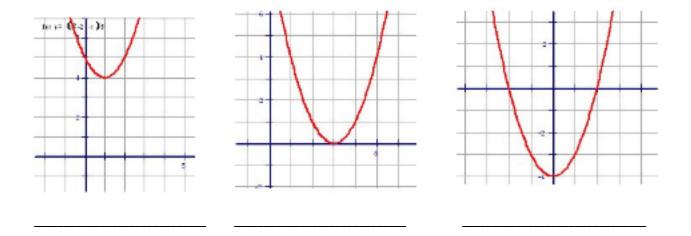

Let's Review

What is a quadratic function?

Examples:

What are 2 forms of writing a quadratic function?


3rd Form: Writing a Quadratic Function in Factored Form

Solutions for Quadratic Functions

When you graph a quadratic equation, the solutions are the ______ or the point(s) where the parabola crosses the *x*-axis.

The *x*-intercepts also called the ______ or ______.

How many solutions does each parabola have?

A quadratic equation can have _____, ____, or _____ real solutions.

Solving Quadratic Functions in Factored Form

Use the Zero Product Property: _____

Think about It! If $4 \cdot b = 0$, what is the value of b? _____

Let's Look at an Example! How do we find a solution?

If (x + 4)(x - 3) = 0, then (x + 4) = 0 or (x - 3) = 0

Find the solution(s) or x-intercept(s) for each quadratic function written in factored form.

1.
$$(x + 7)(3x - 1) = 0$$

2. $(4s + 8)(s + 9) = 0$
3. $j(j - 8) = 0$

4.
$$(x-4)(3x-12) = 0$$

5. $\frac{1}{2}(x-4)(x+1) = 0$
6. $-(x-3)(x-11) = 0$

Writing a Quadratic Function in Factored Form

We need to know two things!

- 1. Does the parabola open up or down?
- 2. What are the *x*-intercepts?

Let's Look at an Example! How do we write a quadratic function in factored form?

The parabola opens UP and *x*-intercepts are (2, 0) and (4, 0).

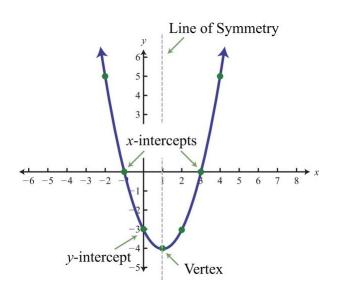
f(*x*) = _____

Write a quadratic equation in factored using the given information.

- 1. The parabola opens DOWN and the *x*-intercepts are (-3, 0) and (1, 0).
- 2. The parabola opens UP and the x-intercepts are (3.5, 0) and (-4.3, 0).

- 3. The parabola opens DOWN and the *x*-intercepts are (0, 0) and (5, 0).
- 4. The parabola opens UP and the *x*-intercepts are $\left(-\frac{1}{2},0\right)$ and $\left(-\frac{3}{4},0\right)$.

- 5. The parabola opens DOWN and the *x*-intercepts are (4, 0) and (-2, 0).
- 6. The parabola opens UP and the *x*-intercepts are (1, 0) and $\left(\frac{2}{3}, 0\right)$.


Finding the Axis of Symmetry

The *axis of symmetry* is the midpoint between the *x*-coordinates of the *x*-intercepts.

How do we find the axis of symmetry given the x-intercepts?

Let's Look at an Example!

Find the axis of symmetry if the x-intercepts are (-1, 0) and (3, 0)?

Determine the axis of symmetry of a parabola with the given x-intercepts.

- 1. The *x*-intercepts are (-12, 0) and (4, 0).
- 2. The *x*-intercepts are (7, 0) and (0, 0).

- 3. The *x*-intercepts are (-8, 0) and (-2, 0).
- 4. The *x*-intercepts are (-3.5, 0) and (4.1, 0).

Finding the Vertex

Follow These Steps!

- 1. Find the axis of symmetry (AOS). *This is the x-coordinate of the vertex!*
- 2. Plug the AOS in for *x* and solve the quadratic equation. *This is y-coordinate of the vertex!*

Let's Look at an Example! How do we find the vertex of a quadratic function given the x-intercepts?

Determine the vertex for a parabola given the quadratic function: f(x) = (x + 2)(x - 2) and the *x*-intercepts (-2, 0) and (2, 0).

- 1. Find the axis of symmetry:
- 2. Let x = 0 and solve for y (or f(x)):

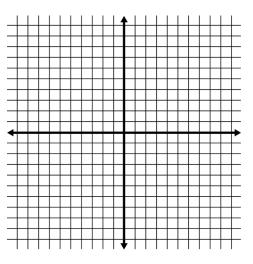
Determine the vertex of a parabola given the quadratic function and the x-intercepts.

1. The quadratic function is f(x) = (x + 3)(x + 1) and the *x*-intercepts are (-3, 0) and (-1, 0).

2. The quadratic function is f(x) = (x + 5)(x - 3) and the *x*-intercepts are (-5, 0) and (3, 0).

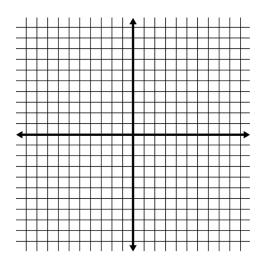
3. The quadratic function is f(x) = (x - 2)(x - 12) and the *x*-intercepts are (2, 0) and (12, 0).

Graphing a Quadratic Function

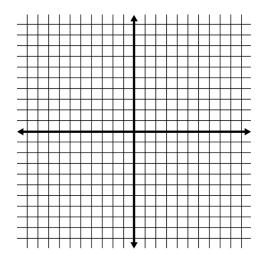

Putting It All Together!

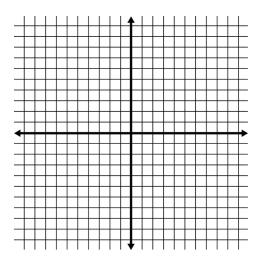
- 1. Use the quadratic equation written in factored form to find the *x*-intercepts.
- 2. Use the *x*-intercepts to find the axis of symmetry.
- 3. Use the axis of symmetry to find the vertex.
- 4. Graph all 3 points: the *x*-intercepts and the vertex to form a U-shaped curve called a parabola.

Quadratic Equation \rightarrow *x*-intercepts \rightarrow Axis of Symmetry \rightarrow Vertex \rightarrow Parabola


Let's Look at an Example! How do we graph a quadratic function?

f(x) = (x - 4)(x + 2)




Identify the x-intercepts and the vertex. Then, graph each of the quadratic functions.

1.
$$f(x) = (x + 1)(x - 3)$$

2.
$$f(x) = (x+2)(x+4)$$

3. f(x) = -x(x - 4)