Algebra 1: 11.4 Notes \& CW/HW
Name \qquad
\qquad Factored Form of a Quadratic Function

Let's Review

What is a quadratic function?
A polynomial of degree 2 (the highest exponent is 2). The graph is a " U " shaped curve called a parabola.
Examples: $5 x^{2}+7$ $6 x^{2}+3 x-1$
$9 x^{2}$

What are 2 forms of writing a quadratic function?

Standard form	$y=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$, where $\mathrm{a} \neq 0$
Vertex form	$y=\mathrm{a}(x-\mathrm{h})^{2}+\mathrm{k}$, where $\mathrm{a} \neq 0$

3 ${ }^{\text {rd }}$ Form: Writing a Quadratic Function in Factored Form

$y=\mathrm{a}\left(x-\mathrm{r}_{1}\right)\left(x-\mathrm{r}_{2}\right)$, where $\mathrm{a} \neq 0$
r_{1} and $\mathrm{r}_{2}=x$-coordinates of the solution, written as $\left(\mathrm{r}_{1}, 0\right)$ and $\left(\mathrm{r}_{2}, 0\right)$.

Solutions for Quadratic Functions

When you graph a quadratic equation, the solutions are the x-intercepts or the point(s) where the parabola crosses the x-axis.

The x-intercepts also called the zeros or roots.
How many solutions does each parabola have?

No solution
Why is there no solution?
There are no x-intercepts.

1 solution

2 solutions
Can a parabola have more than two real solutions?

A quadratic equation can have $\underline{0}, \underline{1}$, or $\underline{2}$ real solutions.

Solving Quadratic Functions in Factored Form

Use the Zero Product Property: If $a b=0$, then $a=0$ or $b=0$.
Think about It! If $4 \mathrm{~g} b=0$, what is the value of b ? $\underline{0}$

Let's Look at an Example! How do we find a solution?
If $(x+4)(x-3)=0$, then $(x+4)=0$ or $(x-3)=0$

$$
\begin{array}{rl}
x+4=0 & x-3=0 \\
\frac{-4}{x}=\frac{-4}{-4} & \frac{+3}{x}=\frac{+3}{3}
\end{array}
$$

Point out that this just a sign
change, $x+4=0$ means $x=-4$

Solutions: $(-4,0)$ and $(3,0)$

Find the solution(s) or x-intercept(s) for each quadratic function written in factored form.

1. $(x+7)(3 x-1)=0$
$x+7=0 \quad 3 x-1=0$
$x=-7 \quad x=\frac{1}{3}$
2. $(4 s+8)(s+9)=0$
$4 s+8=0$
$s+9=0$
$s=-2 \quad s=-9$

Solutions: $(-2,0)$ and $(-9,0)$
3. $j(j-8)=0$
$j=0 \quad j-8=0$
$j=0 \quad j=8$

Solutions: $(-7,0)$ and
$\left(\frac{1}{3}, 0\right)$
4. $(x-4)(3 x-12)=0$
$x-4=0 \quad 3 x-12=0$
$x=4 \quad x=4$
Solution: $(4,0)$

$$
\text { 5. } \begin{array}{ll}
\frac{1}{2}(x-4)(x+1)=0 \\
x-4=0 & x+1=0 \\
x=4 & x=-1
\end{array}
$$

Solutions: $(4,0)$ and $(-1,0)$
6. $-(x-3)(x-11)=0$
$x-3=0 \quad x-11=0$
$x=3 \quad x=11$
Solutions: $(3,0)$ and $(11,0)$

Writing a Quadratic Function in Factored Form

We need to know two things!

If the parabola opens DOWN, add a " -" in front of the factors.

1. Does the parabola open up or down?
2. What are the x-intercepts?

Let's Look at an Example! How do we write a quadratic function in factored form?

The parabola opens UP and x-intercepts are $(2,0)$ and $(4,0)$.
If $(2,0)$ is a solution, then $x=2 . \quad$ If $(4,0)$ is a solution, then $x=4$.

$$
\begin{array}{rlrl}
x & =2 & x & =4 \\
\frac{-2}{-2} & =\frac{-2}{0} & x-4 & =\frac{-4}{0}
\end{array}
$$

Work backwards!
Point out that this just
a sign change, $x=2$ means $x-2=0$.

$$
f(x)=(x-2)(x-4)
$$

Write a quadratic equation in factored using the given information.

1. The parabola opens DOWN and the x-intercepts are $(-3,0)$ and $(1,0)$.
$f(x)=-(x+3)(x-1)$
2. The parabola opens UP and the x-intercepts are $(3.5,0)$ and $(-4.3,0)$. $f(x)=(x-3.5)(x+4.3)$
3. The parabola opens DOWN and the x-intercepts are $(0,0)$ and $(5,0)$.
$f(x)=-x(x-5)$ or $f(x)=-(x-0)(x-5)$
4. The parabola opens DOWN and the x-intercepts are $(4,0)$ and $(-2,0)$.
$f(x)=-(x-4)(x+2)$
5. The parabola opens UP and the x-intercepts are $\left(-\frac{1}{2}, 0\right)$ and $\left(-\frac{3}{4}, 0\right)$.

$$
f(x)=\left(x+\frac{1}{2}\right)\left(x+\frac{3}{4}\right)
$$

6. The parabola opens UP and the x-intercepts are $(1,0)$ and $\left(\frac{2}{3}, 0\right)$.

$$
f(x)=(x-1)\left(x-\frac{2}{3}\right)
$$

