Algebra 1: 11.4 Notes \& CW/HW
Name \qquad Period \qquad Factored Form of a Quadratic Function

Let's Review

What is a quadratic function?
A polynomial of degree 2 (the highest exponent is 2). The graph is a " U " shaped curve called a parabola.

Examples: $\quad 5 x^{2}+7$

$$
6 x^{2}+3 x-1
$$

$$
9 x^{2}
$$

What are 2 forms of writing a quadratic function?

Standard form	$y=\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$, where $\mathrm{a} \neq 0$
Vertex form	$y=\mathrm{a}(x-\mathrm{h})^{2}+\mathrm{k}$, where $\mathrm{a} \neq 0$

3rd Form: Writing a Quadratic Function in Factored Form

$y=\mathrm{a}\left(x-\mathrm{r}_{1}\right)\left(x-\mathrm{r}_{2}\right)$, where $\mathrm{a} \neq 0$
r_{1} and $\mathrm{r}_{2}=x$-coordinates of the solution, written as $\left(\mathrm{r}_{1}, 0\right)$ and $\left(\mathrm{r}_{2}, 0\right)$.

Solutions for Quadratic Functions

When you graph a quadratic equation, the solutions are the x-intercepts or the point(s) where the parabola crosses the x-axis.

The x-intercepts also called the zeros or roots.
How many solutions does each parabola have?

No solution

1 solution

2 solutions
Can a parabola have more than two real solutions?

A quadratic equation can have $\underline{0}, \underline{1}$, or $\underline{2}$ real solutions.

Solving Quadratic Functions in Factored Form

Use the Zero Product Property: If $a b=0$, then $a=0$ or $b=0$.
Think about It! If $4 \cdot b=0$, what is the value of b ? $\underline{0}$

Let's Look at an Example! How do we find a solution?

If $(x+4)(x-3)=0$, then $(x+4)=0$ or $(x-3)=0$

$$
\begin{array}{rlrl}
x+4 & =0 & x-3 & =0 \\
\frac{-4}{x} & =\frac{-4}{-4} & \frac{+3}{x} & =\frac{+3}{3}
\end{array}
$$

Point out that this just a sign change, $x+4=0$ means $x=-4$

Solutions: $(-4,0)$ and $(3,0)$

Find the solution(s) or x-intercept(s) for each quadratic function written in factored form.

1. $(x+7)(3 x-1)=0$
$x+7=0 \quad 3 x-1=0$
$x=-7 \quad x=\frac{1}{3}$
2. $(4 s+8)(s+9)=0$
$4 s+8=0 \quad s+9=0$
$s=-2 \quad s=-9$

Solutions: $(-2,0)$ and $(-9,0)$
3. $j(j-8)=0$
$j=0 \quad j-8=0$
$j=0 \quad j=8$

Solutions: $(-7,0)$ and $\left(\frac{1}{3}, 0\right)$
4. $(x-4)(3 x-12)=0$
$x-4=0 \quad 3 x-12=0$
$x=4 \quad x=4$
Solution: $(4,0)$
5. $\frac{1}{2}(x-4)(x+1)=0$
$x-4=0 \quad x+1=0$
$x=4 \quad x=-1$

Solutions: $(4,0)$ and $(-1,0)$
6. $-(x-3)(x-11)=0$
$x-3=0 \quad x-11=0$
$x=3 \quad x=11$
Solutions: $(3,0)$ and $(11,0)$

Writing a Quadratic Function in Factored Form

We need to know two things!
If the parabola opens DOWN,

1. Does the parabola open up or down?
2. What are the x-intercepts?

Let's Look at an Example! How do we write a quadratic function in factored form?

The parabola opens UP and x-intercepts are $(2,0)$ and $(4,0)$.
If $(2,0)$ is a solution, then $x=2$.

If $(4,0)$ is a solution, then $x=4$.

$$
\begin{aligned}
x & =4 \\
\frac{-4}{-4} & =\frac{-4}{0}
\end{aligned}
$$

Work backwards!
Point out that this just
a sign change, $x=2$ means $x-2=0$.

$$
f(x)=(x-2)(x-4)
$$

Write a quadratic equation in factored using the given information.

1. The parabola opens DOWN and the x-intercepts are $(-3,0)$ and $(1,0)$. $f(x)=-(x+3)(x-1)$
2. The parabola opens UP and the x-intercepts are $(3.5,0)$ and $(-4.3,0)$.
$f(x)=(x-3.5)(x+4.3)$
3. The parabola opens DOWN and the x-intercepts are $(0,0)$ and $(5,0)$.

$$
f(x)=-x(x-5) \text { or } f(x)=-(x-0)(x-5)
$$

4. The parabola opens UP and the x-intercepts are $\left(-\frac{1}{2}, 0\right)$ and $\left(-\frac{3}{4}, 0\right)$.

$$
f(x)=\left(x+\frac{1}{2}\right)\left(x+\frac{3}{4}\right)
$$

5. The parabola opens DOWN and the x-intercepts are $(4,0)$ and $(-2,0)$.
$f(x)=-(x-4)(x+2)$
6. The parabola opens UP and the x-intercepts are $(1,0)$ and $\left(\frac{2}{3}, 0\right)$. $f(x)=(x-1)\left(x-\frac{2}{3}\right)$

Finding the Axis of Symmetry

The axis of symmetry is the midpoint between the x-coordinates of the x-intercepts.

How do we find the axis of symmetry given the x-intercepts?

Let's Look at an Example!

Find the axis of symmetry if the x-intercepts are $(-1,0)$ and $(3,0)$?

$$
x=\frac{-1+3}{2}=\frac{2}{2}=1
$$

Thus, $x=1$.

Determine the axis of symmetry of a parabola with the given x-intercepts.

1. The x-intercepts are $(-12,0)$ and $(4,0)$.
$x=\frac{-12+4}{2}=\frac{-8}{2}=-4$
Axis of Symmetry: $x=-4$
2. The x-intercepts are $(-8,0)$ and $(-2,0)$.

$$
x=\frac{-8+(-2)}{2}=\frac{-10}{2}=-5
$$

Axis of Symmetry: $x=-5$
2. The x-intercepts are $(7,0)$ and $(0,0)$.
$x=\frac{7+0}{2}=\frac{7}{2}=3.5$
Axis of Symmetry: $x=3.5$
4. The x-intercepts are $(-3.5,0)$ and $(4.1,0)$.

$$
x=\frac{-3.5+4.1}{2}=\frac{0.6}{2}=0.3
$$

Axis of Symmetry: $x=0.3$

Finding the Vertex

Follow These Steps!

1. Find the axis of symmetry (AOS). This is the x-coordinate of the vertex!
2. Plug the AOS in for x and solve the quadratic equation. This is y-coordinate of the vertex!

Let's Look at an Example! How do we find the vertex of a quadratic function given the x-intercepts?

Determine the vertex for a parabola given the quadratic function: $f(x)=(x+2)(x-2)$ and the x-intercepts $(-2,0)$ and $(2,0)$.

1. Find the axis of symmetry: $x=\frac{-2+2}{2}=\frac{0}{2}=0$
2. Let $x=0$ and solve for $y($ or $f(x)): f(0)=(0+2)(0-2)=2 \cdot(-2)=-4$

The vertex is $(0,-4)$.

Determine the vertex of a parabola given the quadratic function and the x-intercepts.

1. The quadratic function is $f(x)=(x+3)(x+1)$ and the x-intercepts are $(-3,0)$ and $(-1,0)$.
$x=\frac{-3+(-1)}{2}=\frac{-4}{2}=-2$
$f(-2)=(-2+3)(-2+1)=(1)(-1)=-1$
The vertex is $(-2,-1)$.
2. The quadratic function is $f(x)=(x+5)(x-3)$ and the x-intercepts are $(-5,0)$ and $(3,0)$.
$x=\frac{-5+3}{2}=\frac{-2}{2}=-1$
$f(-1)=(-1+5)(-1-3)=(4)(-4)=-16$
The vertex is $(-1,-16)$.
3. The quadratic function is $f(x)=(x-2)(x-12)$ and the x-intercepts are $(2,0)$ and $(12,0)$. $x=\frac{2+12}{2}=\frac{14}{2}=7$
$f(7)=(7-2)(7-12)=(5)(-5)=-25$
The vertex is $(7,-25)$.

Graphing a Quadratic Function

Putting It All Together!

1. Use the quadratic equation written in factored form to find the x-intercepts.
2. Use the x-intercepts to find the axis of symmetry.
3. Use the axis of symmetry to find the vertex.
4. Graph all 3 points: the x-intercepts and the vertex to form a U-shaped curve called a parabola.

$$
\text { Quadratic Equation } \rightarrow x \text {-intercepts } \rightarrow \text { Axis of Symmetry } \rightarrow \text { Vertex } \rightarrow \text { Parabola }
$$

Let's Look at an Example! How do we graph a quadratic function?

$f(x)=(x-4)(x+2)$
x-intercepts: $(4,0)$ and $(-2,0)$
axis of symmetry: $x=\frac{4+(-2)}{2}=\frac{2}{2}=1$
$f(1)=(1-4)(1+2)=(-3)(3)=-9$,
so the vertex is $(1,-9)$

Identify the x-intercepts and the vertex. Then, graph each of the quadratic functions.

1. $f(x)=(x+1)(x-3)$
x-intercepts: $(-1,0)$ and $(3,0)$ axis of symmetry: $x=\frac{-1+3}{2}=\frac{2}{2}=1$ $f(1)=(1+1)(1-3)=(2)(-2)=-4$, so the vertex is $(1,-4)$

2. $f(x)=(x+2)(x+4)$
x-intercepts: $(-2,0)$ and $(-4,0)$
axis of symmetry: $x=\frac{-2+(-4)}{2}=\frac{-6}{2}=-3$
$f(-3)=(-3+2)(-3+4)=(-1)(1)=-1$, so the vertex is $(-3,-1)$

3. $f(x)=-x(x-4)$
x-intercepts: $(0,0)$ and $(4,0)$
axis of symmetry: $x=\frac{0+4}{2}=\frac{4}{2}=2$
$f(2)=(-2)(2-4)=(-2)(-2)=4$, so the vertex is $(2,4)$

