\qquad
\qquad Exploring Quadratic Functions

Learning Goals:

Graph a quadratic function of the form $y=a x^{2}+b x+c$.
Analyze the standard form of a quadratic function and use it to sketch its graph.

Let's Review

What do we know about the graphs of $y=\mathrm{a} x^{2}$ and $y=\mathrm{a} x^{2}+\mathrm{c}$?

If $\mathrm{a}>0$, the parabola opens UP.	If $\|\mathrm{a}\|>1$, the parabola gets narrower/skinner.
If a < 0, the parabola opens DOWN.	If $\|\mathrm{a}\|<1$, the parabola gets wider.

If $c>0$, the parabola moves UP c units.	If $c<0$, the parabola moves DOWN c units.

Essential Question

How does the value of b affect the graph? More importantly, how does it change the axis of symmetry? Consider the graphs of 3 different quadratic functions.

All 3 graphs have the same value for $\mathrm{a}, \mathrm{a}=2$, and the same value for $\mathrm{c}, \mathrm{c}=0$. These graphs also have the same y-intercept, $y=c=0$.
Only the value of b is different for each quadratic function.
The value of b changes the \qquad .

Equation for the axis of symmetry is . This is also the x-coordinate for the vertex.

Let's calculate the axis of symmetry for each of the quadratic functions listed above.

1) $2 x^{2}+2 x$
2) $2 x^{2}+4 x$
3) $2 x^{2}+6 x$

Once you know the axis of symmetry, how do you find the vertex?

How do you find the y-intercept?

Graphing $y=a x^{2}+\mathbf{b} x+c$.
Graph the function $y=-3 x^{2}+6 x+5$.

x	y
-1	
0	
1	
2	
3	

