\qquad
\qquad

Learning Goals:

Graph a quadratic function of the form $y=a x^{2}+b x+c$.
Analyze the standard form of a quadratic function and use it to sketch its graph.

Let's Review

What do we know about the graphs of $y=\mathrm{a} x^{2}$ and $y=\mathrm{a} x^{2}+\mathrm{c}$?

If a >0, the parabola opens UP.	If $\|\mathrm{a}\|>1$, the parabola gets narrower/skinner.
If a < 0, the parabola opens DOWN.	If $\|\mathrm{a}\|<1$, the parabola gets wider.

If c>0, the parabola moves UP c units. \quad If $c<0$, the parabola moves DOWN c units.

Essential Question

How does the value of b affect the graph? More importantly, how does it change the axis of symmetry? Consider the graphs of 3 different quadratic functions.

All 3 graphs have the same value for $\mathrm{a}, \mathrm{a}=2$, and the same value for $\mathrm{c}, \mathrm{c}=0$. These graphs also have the same y-intercept, $y=c=0$.
Only the value of b is different for each quadratic function.
The value of b changes the axis of symmetry.
Equation for the axis of symmetry is $x=-\frac{b}{2 a}$. This is also the x-coordinate for the vertex.
Let's calculate the axis of symmetry for each of the quadratic functions listed above.

1) $2 x^{2}+2 x$
$x=-\frac{2}{2(2)}=-\frac{2}{4}=-\frac{1}{2}$
2) $2 x^{2}+4 x$
$x=-\frac{4}{2(2)}=-\frac{4}{4}=-1$
3) $2 x^{2}+6 x$

$$
x=-\frac{6}{2(2)}=-\frac{6}{4}=-\frac{3}{2}
$$

Once you know the axis of symmetry, how do you find the vertex?
The axis of symmetry is the x-coordinate of the vertex.
Plug the value of x into the quadratic function to find the y-coordinate of the vertex.

How do you find the y-intercept?
Let $x=0$ in the quadratic function and solve for y. The y-intercept will be $y=\mathrm{c}$.

Graphing $y=a x^{2}+\mathbf{b} x+c$.

Graph the function $y=-3 x^{2}+6 x+5$.

Steps:

- Find the axis of symmetry.
- Find the y-coordinate of the vertex by substituting the axis of symmetry for x in the quadratic function.
- Find the y-intercept by letting $x=0$ in the quadratic function.
- Choose another value for x on the same side of the vertex as the y-intercept.
- Reflect the y-intercept and another point across the axis of symmetry.
- Sketch the parabola.

$$
\text { Axis of symmetry: } x=-\frac{6}{2(-3)}=-\frac{6}{-6}=1
$$

$$
y=-3(1)^{2}+6(1)+5=-3+6+5=8
$$

The vertex is $(1,8)$.

$$
y=-3(0)^{2}+6(0)+5=5
$$

The y-intercept is $(0,5)$

Let $\mathrm{x}=-1$.
$y=-3(-1)^{2}+6(-1)+5=-3-6+5=-4$
Another point is $(-1,-4)$.
The point $(2,5)$ is a reflection of $(0,5)$ and $(3,-4)$ is a reflection of $(-1,-4)$. Each set of points has an x-coordinate that is the same distance (or \# of units) from the axis of symmetry.

\boldsymbol{x}	\boldsymbol{y}
-1	-4
0	5
1	8
2	5
3	-4

Put the vertex in the middle of the table!

