

Learning Goals:

Graph a quadratic function of the form $y = ax^2 + bx + c$. Analyze the standard form of a quadratic function and use it to sketch its graph.

Let's Review

What do we know about the graphs of $y = ax^2$ and $y = ax^2 + c$?

If $a > 0$, the parabola opens UP.	If $ a > 1$, the parabola gets narrower/skinner.
If a < 0, the parabola opens DOWN.	If $ a < 1$, the parabola gets wider.

If $c > 0$, the parabola moves UP c units.	If $c < 0$, the parabola moves DOWN c units.
---	---

Essential Question

How does the value of b affect the graph? More importantly, how does it change the axis of symmetry? Consider the graphs of 3 different quadratic functions.

All 3 graphs have the same value for a, a = 2, and the same value for c, c = 0. These graphs also have the same y-intercept, y = c = 0.

Only the value of b is different for each quadratic function.

The value of b changes the **axis of symmetry**.

Equation for the axis of symmetry is $x = -\frac{b}{2a}$. This is also the *x*-coordinate for the vertex.

Let's calculate the axis of symmetry for each of the quadratic functions listed above.

2) $2x^2 + 4x$ 3) $2x^2 + 6x$ 1) $2x^2 + 2x$ $x = -\frac{2}{2(2)} = -\frac{2}{4} = -\frac{1}{2}$ $x = -\frac{4}{2(2)} = -\frac{4}{4} = -1$ $x = -\frac{6}{2(2)} = -\frac{6}{4} = -\frac{3}{2}$ Once you know the axis of symmetry, how do you find the vertex?

The axis of symmetry is the *x*-coordinate of the vertex.

Plug the value of *x* into the quadratic function to find the *y*-coordinate of the vertex.

How do you find the y-intercept?

Let x = 0 in the quadratic function and solve for y. The *y*-intercept will be y = c.

<u>Graphing $y = ax^2 + bx + c$.</u>

Graph the function $y = -3x^2 + 6x + 5$.

Steps:	
 Find the axis of symmetry. 	Axis of symmetry: $x = -\frac{6}{2(-3)} = -\frac{6}{-6} = 1$
 Find the <i>y</i>-coordinate of the vertex by substituting the axis of symmetry for <i>x</i> in the quadratic function. 	$y = -3(1)^{2} + 6(1) + 5 = -3 + 6 + 5 = 8$ The vertex is (1, 8).
 Find the <i>y</i>-intercept by letting <i>x</i> = 0 in the quadratic function. 	$y = -3(0)^{2} + 6(0) + 5 = 5$ The y-intercept is (0, 5)
 Choose another value for x on the same side of the vertex as the y-intercept. 	Let x = -1. $y = -3(-1)^2 + 6(-1) + 5 = -3 - 6 + 5 = -4$ Another point is (-1, -4).
 Reflect the y-intercept and another point across the axis of symmetry. 	The point (2, 5) is a reflection of (0, 5) and (3, -4) is a reflection of (-1, -4). Each set of points has an x -coordinate that is the same distance (or # of units) from the axis of symmetry.
 Sketch the parabola. 	

x	y
-1	-4
0	5
1	8
2	5
3	-4

Put the vertex in the middle of the table!