

Learning Goals:

Graph a quadratic function using a table.

Analyze the standard form of a quadratic function and use it to sketch its graph.

Review

A _______ is a function that can be written in standard form,

Examples:

The simplest quadratic function is the quadratic parent function: ______.

The graph of a quadratic function is a U-shaped curve called a ______.

The graph of $y = x^2$:

The line that divides a parabola into two matching halves is called the _____

It is the *x*-coordinate of the vertex.

The turning point of a parabola is the ______. When the vertex is the lowest point, it is called a

_____. When the vertex is the highest point, it is called a ______.

 $y = ax^2 + bx + c$

If a > 0 or positive, then	If a < 0 or negative, then
Parabola opens	Parabola opens
Vertex is a	Vertex is a

Identifying a Vertex and the Axis of Symmetry

Identify the vertex and the axis of symmetry. Tell whether the vertex is a maximum or minimum.

<u>Graphing $y = ax^2$ </u>

Graph the quadratic function $y = \frac{1}{2}x^2$

x	$y = \frac{1}{2}x^2$	(x, y)
-4	$\frac{1}{2}(-4)^2 = 8$	(-4, 8)
-2		
0		
2		
4		

Graph the quadratic function $y = -2x^2$

x	$y = -2x^2$	(<i>x</i> , <i>y</i>)
-2	$-2(-2)^2 = -8$	(-2, -8)
-1		
0		
1		
2		

For the quadratic function, $y = ax^2 + bx + c$, how does the value of "a" change the width of the parabola?

<u>Graphing $y = ax^2 + c$ </u>

How do the graphs of $y = 2x^2 + 3$ and $y = 2x^2$ compare?

x	$y = 2x^2$	$y = 2x^2 + 3$
-2	8	11
-1	2	5
0	0	3
1	2	5
2	8	11

For the quadratic function, $y = ax^2 + bx + c$, how does the value of "c" change the graph of the parabola?

Remember, "c" is also the _____ because when x = 0, $y = a(0)^2 + b(0) + c$ or y = c.