\qquad
\qquad Exploring Quadratic Functions

Learning Goals:

Graph a quadratic function using a table.
Analyze the standard form of a quadratic function and use it to sketch its graph.

Review

A \qquad is a function that can be written in standard form,
\qquad .

Examples:
The simplest quadratic function is the quadratic parent function: \qquad
The graph of a quadratic function is a U-shaped curve called a \qquad _.

The graph of $y=x^{2}$:

The line that divides a parabola into two matching halves is called the \qquad .

It is the x-coordinate of the vertex.
The turning point of a parabola is the \qquad . When the vertex is the lowest point, it is called a
\qquad . When the vertex is the highest point, it is called a \qquad .

If $\mathbf{a} \mathbf{~} \mathbf{0}$ or positive, then	If a < 0 or negative, then
Parabola opens	Parabola opens
Vertex is a	Vertex is a

Identifying a Vertex and the Axis of Symmetry

Identify the vertex and the axis of symmetry. Tell whether the vertex is a maximum or minimum.
a.

b.

Graph the quadratic function $y=\frac{1}{2} x^{2}$

x	$y=\frac{1}{2} x^{2}$	(x, y)
-4	$\frac{1}{2}(-4)^{2}=8$	$(-4,8)$
-2		
0		
2		
4		

Graph the quadratic function $y=-2 x^{2}$

x	$y=-2 x^{2}$	(x, y)
-2	$-2(-2)^{2}=-8$	$(-2,-8)$
-1		
0		
1		
2		

For the quadratic function, $y=a x^{2}+b x+c$, how does the value of " a " change the width of the parabola?

Graphing $y=\mathbf{a} x^{2}+\mathbf{c}$
How do the graphs of $y=2 x^{2}+3$ and $y=2 x^{2}$ compare?

x	$y=2 x^{2}$	$y=2 x^{2}+3$
-2	8	11
-1	2	5
0	0	3
1	2	5
2	8	11

For the quadratic function, $y=a x^{2}+b x+c$, how does the value of " c " change the graph of the parabola?

Remember, " c " is also the \qquad because when $x=0, y=\mathrm{a}(0)^{2}+\mathrm{b}(0)+\mathrm{c}$ or $y=\mathrm{c}$.

